• Title/Summary/Keyword: nitrite alternative

Search Result 39, Processing Time 0.023 seconds

Effect of Sodium-Alternative Curing Salts on Physicochemical Properties during Salami Manufacture

  • Yim, Dong-Gyun;Shin, Dong-Jin;Jo, Cheorun;Nam, Ki-Chang
    • Food Science of Animal Resources
    • /
    • v.40 no.6
    • /
    • pp.946-956
    • /
    • 2020
  • To identify the effect of sodium-alternative curing salts on the quality properties of salami through the ripening process, four salami treatments were prepared with different curing salts, T1 (-control, NaCl 1.9%), T2 (+control, NaCl 1.9%+NaNO2 0.01%), T3 (KCl 1.9%+NaNO2 0.01%), and T4 (MgCl2 1.9%+NaNO2 0.01%), under 40 days ripening conditions. Sodium-alternative salts (T3 or T4) showed characteristically different quality traits compared with T2. Especially, T3 had lower pH, water activity, volatile basic nitrogen, and lipid oxidation after 20 days of ripening period, compare with T2 or T4 (p<0.05). Sodium nitrite had critical impact on increased a* values, and T3 showed higher a* values compared with T2 or T4 (p<0.05). Sodium nitrite reduced initial growth of coliforms but sodium-alternative salts did not affect microbial growth patterns. T2-T4 containing sodium nitrite had higher content of umami nucleotide flavor compounds compared with T1, regardless of the chlorine salt species. The combined use of sodium-alternative curing salts and minimal sodium nitrite was found to be an applicable strategy on development of low sodium salami without a trade-off of the product quality.

Studies on the Regulation for Use, Metabolism, Intake, and Safety of Sodium Nitrite in Meat Products (육가공품에 사용되는 아질산염의 사용기준, 대사, 섭취량과 안전성에 대한 조사 연구)

  • Lee Keun-Taik;Kang Jong-Ok;Kim Cheon-Jei;Lee Mooha;Lee Sung Ki;Lee Joo-Yeon;Lee Ju-Woon;Cho Soo-Hyun;Joo Seon-Tea;Chin Koo B.;Choi Sung-Hee
    • Food Science of Animal Resources
    • /
    • v.25 no.1
    • /
    • pp.103-120
    • /
    • 2005
  • During the 1970s, concern arose that cured meats contained high levels of residual nitrite and preformed nitrosamines. Therefore, the search for alternatives and alternative approaches to the use of nitrite have been still continued, however no complete alternative for nitrite has yet been identified. Recently, it was publicized in Korea that nitrite-containing meat products would be detrimental to health, about which consumers have been seriously concerned. Therefore, this study was carried out to inform the consumer of the safety status of nitrite and thereby to lead proper consumption of meat products. For assessing the safety of nitrite, data regarding the regulation for use, metabolism in human body, and dietary intake amounts of nitrite were collected and analyzed. The mean intake level of nitrite for Korean per capita was recently reported to be not more than 1% of ADI set by JECFA. On the contrary, a calculation indicated that the daily nitrite intake per capita from saliva by ingestion of vegetables in Korea would be about 300-fold higher than that from cured meats. In consideration of the low consumption amount of meat products per capita of Korean, that is, at least one fifth, compared to European and American, there is no particular reason to concern about the impairment of health by nitrite intake from meat products for Korean. However, any effort for the reduction of residual nitrite content in cured meats should be given with an idea to minimize the intake of nitrite even from the minor source.

Nitrite and Nitrosamine in food (식품중의 아질산염과 N-Nitrosamine에 관한 고찰)

  • 우순자
    • Journal of the Korean Home Economics Association
    • /
    • v.23 no.3
    • /
    • pp.85-101
    • /
    • 1985
  • 1. Nitrate and nitrite may contribute via nitrosation to the human exposure to N-nitroso compounds, especially nitrosamines, which are suspectd to be human carcinogens. 2. Since certain foods contain traces of nitrosamines, one should take the several points into consideration in evaluating the risk. 3. Nitrites, which can appear in the because of natural occurrence or deliberate addition, can react under the acidic conditions of the normal stomach with secondary amines to form nitrosamine. 4. Among the foods esamined, nitrate-nitrite treated meat products cooked bacon, and salted and dried fish are the main contributors of nitrosamines in our diet. 5. Consequently, in order to minimize human exposure to these chemicals, it is obviously essential to develop the alternative sources of nitrite in cured meat products. Thus the emphasis should be placed upon the most effective use of nitrite in curing with the use of acceptable inhibitors of nitrosation such as ascorbc acid or $\alpha$-tocopherol.

  • PDF

Clean Label Meat Technology: Pre-Converted Nitrite as a Natural Curing

  • Yong, Hae In;Kim, Tae-Kyung;Choi, Hee-Don;Jang, Hae Won;Jung, Samooel;Choi, Yun-Sang
    • Food Science of Animal Resources
    • /
    • v.41 no.2
    • /
    • pp.173-184
    • /
    • 2021
  • Clean labeling is emerging as an important issue in the food industry, particularly for meat products that contain many food additives. Among synthetic additives, nitrite is the most important additive in the meat processing industry and is related to the development of cured color and flavor, inhibition of oxidation, and control of microbial growth in processed meat products. As an alternative to synthetic nitrite, preconverted nitrite from natural microorganisms has been investigated, and the applications of pre-converted nitrite have been reported. Natural nitrate sources mainly include fruits and vegetables with high nitrate content. Celery juice or powder form have been used widely in various studies. Many types of commercial starter cultures have been developed. S. carnosus is used as a critical nitrate reducing microorganism and lactic acid bacteria or other Staphylococcus species also were used. Pre-converted nitrite has also been compared with synthetic nitrite and studies have been aimed at improving utilization by exploiting the strengths (positive consumer attitude and decreased residual nitrite content) and limiting the weaknesses (remained carcinogenic risk) of pre-converted nitrite. Moreover, as concerns regarding the use of synthetic nitrites increased, research was conducted to meet consumer demands for the use of natural nitrite from raw materials. In this report, we review and discuss various studies in which synthetic nitrite was replaced with natural materials and evaluate pre-converted nitrite technology as a natural curing approach from a clean label perspective in the manufacturing of processed meat products.

Nitrite Accumulation of Anaerobic Treatment Effluent of Slurry-type Piggery Waste (슬러리상 돈사폐수의 혐기성 처리수의 아질산성 질소 축적)

  • Hwang, In-Su;Min, Kyung-Sok;Yun, Zuwhan
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.711-719
    • /
    • 2006
  • The effluent from anaerobic digestion process of slurry-type piggery waste has a characteristic of very low C/N ratio. Because of high nitrogen content, it is necessary to evaluate nitrogen removal alternative rather than conventional nitrification-denitrification scheme. In this study, two parallel treatment schemes of SBR-like partial nitritation reactor coupled with anaerobic ammonium oxidation (ANAMMOX) reactor, and a nitritation reactor followed by nitrite denitrification process were evaluated with a slurry-type piggery waste. The feed to reactors adjusted with various $NH_4-N$ and organics concentration. The nitrite accumulation was successfully accomplished at the loading rate of about $1.0kgNH_4-N/m^3-day$. The $NO_2-N/NH_4-N$ ratio 1~2.6 in nitritated effluent that operated at HRT of 1 day indicated that SBR-like partial nitritation was applicable to ANAMMOX operation. Meanwhile, the nitrite accumulation of 87% was achieved at SBR operated with HRT of 3 days and $0.4mgO_2/L$ for denitritation. Experimental results further suggested that HRT (SRT) and free ammonia(FA) rather than DO are an effective control parameter for nitrite accumulation in piggery waste.

Effect of Amaranthus Pigments on Quality Characteristics of Pork Sausages

  • Zhou, Cunliu;Zhang, Lin;Wang, Hui;Chen, Conggui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1493-1498
    • /
    • 2012
  • The objective of this investigation was to evaluate the possibility of substituting Amaranthus pigments for nitrates in the of manufacture pork sausage. Five treatments of pork sausages (5% fat) with two levels of sodium nitrite (0 and 0.015%), or three levels (0.1%, 0.2% and 0.3%) of pigments extracted from red Amaranthus were produced. The addition of Amaranthus pigments resulted in the significant increase of $a^*$ values, sensory color, flavor and overall acceptance scores, but the significant reduction of $b^*$ values, TBA values and VBN values (p<0.05). Based mainly on the results of overall acceptance during 29 d storage, it could be concluded that Amaranthus pigments showed a potential as nitrite alternative for pork sausage manufacture.

Effects of Dongchimi Powder as a Natural Nitrite Source on Quality Properties of Emulsion-Type Sausages

  • Su Min Bae;Da Hun Jeong;Seung Hwa Gwak;Seonyeong Kang;Jong Youn Jeong
    • Food Science of Animal Resources
    • /
    • v.43 no.3
    • /
    • pp.502-511
    • /
    • 2023
  • The use of nitrite as a conventional curing agent is decreasing because of the negative consumer perception of synthetic compounds in foods. Therefore, this study was conducted to investigate the efficacy of dongchimi as an alternative to synthetic nitrite and its effect on the qualitative properties of emulsion-type sausages. Under all tested fermentation conditions, both nitrite and nitrate contents were the highest when dongchimi was fermented at 0℃ for 1 wk. The fermented dongchimi was powdered and added to the sausages. Emulsion-type sausages were prepared with 0.25% (treatment 1), 0.35% (treatment 2), 0.45% (treatment 3), or 0.55% (treatment 4) dongchimi powder, with 0.01% sodium nitrite-treated (control 1) and 0.40% celery powder-treated (control 2) sausages as controls. There were not different (p>0.05) in the pH, cooking yield, CIE L*, and CIE a* between the control 1 and treatments 2, 3, and 4. CIE b* was significantly higher (p<0.05) in the control 2 and lower (p<0.05) in the control 1 than that in the other groups. Treatment 4 and control 1 had similar contents of residual nitrite, nitrosyl hemochrome, and total pigment. Additionally, treatment 4 exhibited a significantly better (p<0.05) curing efficiency than the control 1. However, naturally cured sausages showed higher (p<0.05) lipid oxidation than the control 1. This study suggests that the use of more than 0.35% dongchimi powder could replace sodium nitrite or celery powder as curing agents for emulsion-type sausages.

Effects of Pre-Converted Nitrite from Red Beet and Ascorbic Acid on Quality Characteristics in Meat Emulsions

  • Choi, Yun-Sang;Kim, Tae-Kyung;Jeon, Ki-Hong;Park, Jong-Dae;Kim, Hyun-Wook;Hwang, Ko-Eun;Kim, Young-Boong
    • Food Science of Animal Resources
    • /
    • v.37 no.2
    • /
    • pp.288-296
    • /
    • 2017
  • We investigated the effects of fermented red beet extract and ascorbic acid on color development in meat emulsions. The pH of meat emulsions containing red beet extract decreased with an increase in the amount of extract added. The redness of the treated meat emulsions was higher than that of the control with no added nitrite or fermented red beet extract (p< 0.05), though the redness of the meat emulsions treated with fermented red beet extract only was lower than in that treated with both fermented red beet extract and ascorbic acid (p<0.05). The highest VBN, TBARS, and total viable count values were observed in the control, and these values in the meat emulsions treated with fermented red beet extract were higher than in that treated with both fermented red beet extract and ascorbic acid (p<0.05). E. coli and coliform bacteria were not found in any of the meat emulsions tested. Treatment T2, containing nitrite and ascorbic acid, had the highest overall acceptability score (p<0.05); however, there was no significant difference between the T2 treatment and the T6 treatment, which contained 10% pre-converted nitrite from red beet extract and 0.05% ascorbic acid (p>0.05). The residual nitrite content of the meat emulsions treated with ascorbic acid was lower than in those treated without ascorbic acid (p<0.05). Thus, the combination of fermented red beet extract and ascorbic acid could be a viable alternative to synthetic nitrite for the stability of color development in meat emulsions.

Antioxidative Activity and Nitrite Scavenging Ability of Ethyl Acetate Extract from Acanthopanax sessiliflorus (오가피 메탄올 추출물의 항산화 효과 및 아질산염 소거작용)

  • Lim, Jin-A;Yun, Bo-Won;Kang, Jeong-Il;Baek, Seung-Hwa
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.955-960
    • /
    • 2007
  • Efficacy of antioxidative activity and nitrite scavenging ability of methanol extract from Acanthopanax sessiliflorus was investigated. Electron-donating ability of extract at $RC_{50}$ was 29.93 ${\mu}g/mL$. After addition of 0.96 mg/mL extract, autooxidation of pyrogallol decreased to 22.85% by superoxide dismutase-like activity. In antioxidative activity of extract against linoleic acid during incubation times of 24, 48, 96 hours at $40^{\circ}C$, lipid peroxidation values significantly decreased by 48.89%, 45.0%, 46.34% with addition of 0.2 mg/mL, respectively. Total phenolic content was determined as gallic acid equivalents (GAE) and values revealed $410.25{\pm}4.74$ GAE ${\mu}g/mg$ of extract. Nitrite scavenging ability showed the most remarkable effect at pH 1.2, exhibited to 88.3% by addition of 0.2 mg/mL. These results suggest that methanol extract from A. sessiliflorus can be used as bioactive and functional material.

Antioxidative Activity and Nitrite Scavenging Ability of Methanol Extract from Ricinus communis (아주까리 메탄을 추출물의 항산화 효과 및 아질산염 소거작용)

  • Kang, Jeong-Il;Lim, Jin-A
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.666-670
    • /
    • 2007
  • Efficacy of antioxidative activity and nitrite scavenging ability of methanol extract from Ricinus communis. was investigated. Electron-donating ability of extract at RC$_{50}$ was 114.02 ${\mu}g$/mL. After addition of 0.46 mg/mL extract, autoxidation of pyrogallol decreased to 32.99% by superoxide dismutase-like activity. In antioxidative activity of extract against linoleic acid during incubation times of 24, 48, 96 hours at 40$^{\circ}C$, lipid peroxidation values significantly decreased by 85.50%, 87.77%, 90.95% with addition of 0.2 mg/mL, respectively. Total phenolic content was determined as gallic acid equivalents (GAE) and values revealed 83.98 ${\pm}$ 5.66 GAE ${\mu}g$/mg of extract. Nitrite scavenging ability showed the most remarkable effect at pH 1.2, decreasing to 47.24% by addition of 0.2 mg/mL. These results suggest that methanol extract from Ricinus communis. can be used as bioactive and functional material.