• Title/Summary/Keyword: nitrification process

Search Result 262, Processing Time 0.024 seconds

Evaluation of Operation Characteristics with Aeration Time in Intermittent Aeration Membrane Bioreactor (간헐포기 MBR공정에서 포기시간에 따른 운전특성 평가)

  • Lim, Bong-Su;Choi, Bong-Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.353-359
    • /
    • 2005
  • This study was conducted to evaluate the operation characteristics with aeration time in intermittent aeration membrane bioreactor. The BOD removal efficiency rate of this process was over than 97% regardless of aeration on/off time. To get over than 82% of nitrogen removal efficiency rate, aeration off time needs more than 70 minutes in reactor. Specific denitrfication rate was 2.68 mg $NO_3-N/gMv/hr$ in 40/80 min aeration on/off time, was 2.6 times more than 60/60 min, and 1.4 times more than 50/70 min in 6,300 mg/L of MLSS concentration. Specific nitrification rate was 1.96 mg $NH_4-N/gMv/hr$ in 50/70 min, was 1.4 times more than 40/80 min, but it was effectded little upon nitrification. Microbial activity was effected little according to aeration on/off time, oxygen demend was reduced according to aeration off time increased and microbial concentration increased. The longer aeration off time become, the higher Extraceller Pollymeric Substance (EPS), 50/70 min and 40/80 min in aeration on/off time was increased 1.6 times and 2.7 times, respectively more than 60/60 min because of increase of operation pressure.

Enzyme Immobilized Reactor Design for Ammonia Removal from Waste Water

  • Song, Ju-Yeong;Chung, Soo-Bae
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.77-81
    • /
    • 1997
  • Removal of nitrogen compound from waste water is essential and often accomplished by biological process. To prevent washout and to develop an efficient bioreactor, immobilization of sutibal microorganisms could be sensible approach. Strains and permeabilized cell encapsulated in cellulose nitrate microcapsules and immobilized on polystyrene films were prepared by the method described in the previous study. In the wastewater treatment system, nitrification of ammonia component is generally known as rate controlling step. To enhance the rate of nitrification, firstly nitrifying strains Nitrosomonas europaea(IFO14298), are permeabilized chemically, and immobilized on polystyrene films and secondly oxidation rates of strain system and permeabilized strain system are compared in the same condition. with 30 minute permeabilized cells, it took about 25 hours to oxidize 70% of ammonia in the solution, while it took about 40 hours to treat same amount of ammonia with untreated cells. All the immobilization procedures did not harm to the enzyme activity and no mass transfer resistance through the capsule well was shown. In the durability test of immobilized system, the system showed considerable activity for the repeated operation for 90 days. With these results, the system developed in this study showed the possibility to be used in the actual waste water treatment system.

  • PDF

Potential of a Bioelectrochemical Technology for the Polishing of Domestic Wastewater Treatment Plant Effluent (생물전기화학기술을 이용한 하수처리장 방류수 수질개선 가능성)

  • Song, Young-Chae;Oh, Gyung-Geun
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.4
    • /
    • pp.351-359
    • /
    • 2015
  • The study on the improvement of discharge water quality from domestic wastewater treatment plant (DWTP) was performed in a filter type bioelectrochemical system. The COD removal efficiency for a synthetic discharge water was about 88%, and the effluent COD was less than 5mg/L. The nitrification efficiency of the bioelectrochemical system was over 97%, but a considerable amount of the nitrogen was remained as nitrate form in the effluent. The total nitrogen removal efficiency was only around 30%. There are no significant differences in the removal of COD and nitrogen at 0.6 and 0.8V of the applied voltages between anode and cathode. The removal of COD and nitrogen in the system were quite stable when the HRT ranged from 60 to 15 minutes, and at 10 minutes of HRT, the nitrification efficiency was slightly decreased. The performance of the bioelectrochemical system has quickly recovered from the shocks in the influent due to high concentration of COD and nitrogen. For the effluent that discharged from the DWTP, the removal efficiencies of COD and total nitrogen from the bioelectrochemical system were 50 and 30%, respectively. Thus the bioelectrochemical system was a feasible process for further polishing the effluent quality from DWTP.

Fate of Nitrogen Influenced by Circumstances of a Reclaimed Tidal Soils (간척지 토양환경 조건별 토양내 질소 동태와 영향 요소)

  • Han, Sang-Gyun;Kim, Hey-Jin;Song, Jin-Ah;Chung, Doug-young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.745-751
    • /
    • 2011
  • In most agricultural soils, ammonium ($NH_4^+$) from fertilizer is quickly converted to nitrate ($NO_3^-$) by the process of nitrification which is crucial to the efficiency of N fertilizers and their impact on the environment. However, nitrification studies have been studied extensively in agricultural soils, not in a newly reclaimed tidal soil which show saline-sodic and high pH. Therefore, understanding the fate of nitrogen species transformed from urea introduced into reclaimed tidal soil is important for nutrient management and environmental quality. This paper reviewed studies regarding to transformation and fate of nitrogen sources such as urea under the circumstances of a reclaimed tidal soils located in a western coastal area.

Simultaneous N-P Removal of Wastewater with Flow Variation by Anaerobic-Aerobic Activated Sludge Process(I) (혐기-호기 활성슬러지법에 의한 유량변동이 있는 폐수의 N-P 동시 제거에 관한 연구(I))

  • 이민규;서근학
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.509-516
    • /
    • 1995
  • The treatment performances of anaerobic-aerobic activated sludge process were investigated under various operation conditions. The treatment system proposed in this study gave a relatively stable performance against hourly change of the flow rate and showed a satisfactory removal of nitrogen and phosphorus compounds under experimental conditions. The recycle ratio of mixed liquor from aerobic to anaerobic region and peak coefficient primarily controlled the extent of nitrogen removal. The recycle ratio had the optimum values which were determined by the microbial activities of nitrification and denitrification. The behavior of the treatment unit could be simulated by using the kinetic equations and reactor models which considered the treatment units as complete mixing tanks.

  • PDF

Simultaneous N-P Removal of Wastewater with Flow Variation by Anaerobic-Aerobic Activated Sludge Process(I) (혐기-호기 활성슬러지법에 의한 유량변동이 있는 폐수의 N-P 동시 제거에 관한 연구(I))

  • Lee, Min-Gyu;Suh, Kuen-Hack
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.123-123
    • /
    • 1995
  • The treatment performances of anaerobic-aerobic activated sludge process were investigated under various operation conditions. The treatment system proposed in this study gave a relatively stable performance against hourly change of the flow rate and showed a satisfactory removal of nitrogen and phosphorus compounds under experimental conditions. The recycle ratio of mixed liquor from aerobic to anaerobic region and peak coefficient primarily controlled the extent of nitrogen removal. The recycle ratio had the optimum values which were determined by the microbial activities of nitrification and denitrification. The behavior of the treatment unit could be simulated by using the kinetic equations and reactor models which considered the treatment units as complete mixing tanks.

Nitrogen Removal in the Multi-stage Bed Attached Growth Process of $A^2/O$ System with Interanal Recycle Ratio (다단층 부착성장 공법($A^2/O$향)에서 순환비에 따른 질소제거)

  • 최규철;윤용수;정일현
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.3
    • /
    • pp.95-102
    • /
    • 1997
  • The process which can stabilize water quality of treatment and improve nitrogen removal rate under the condition of high organic loading was developed by charging fibrous HBC media to single sludge nitrification-denitrification process. This process was operated easier, minimized the treatment cost, and shortened the retention time. To improve T-N removal rate, a part of nitrifing liquid at aerobic zone was recycled to anoxic zone by approximate internal recycle ratio. The experimental results are as follows ; T-N removal efficiency in the organic volumetric loading 0.14-0.19 kg/COD/m$^{3}$·d was obtained asmaxium of 85% at internal recycle ratio 2.5 and in more ratio than this it was decreased. Organic removal efficiency was about 91% under the overall experimental conditions and not influenced by recycle ratio.

  • PDF

A Study on the Nitrogen Control in the Treated Leachate water by Bio-film Module System (생물막을 이용한 침출수처리수 중의 질소제어에 관한 연구)

  • 최규철;이규성;정일현
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.1
    • /
    • pp.71-76
    • /
    • 1996
  • Bio-film module system was applied to the treated leachate water that priorly had been treated with biological nitrification process. The experiments were performed in the laboratory and treated leachate water treatment facility. Experimental results obtained from laboratory conditions and nitrogen removal efficiencies were averaged 90% for 1 hr.

  • PDF

Biological Nitrification and Denitrification for Landfill Leachate Containing High Concentration of Ammonium-Nitrogen by using MLE Process (MLE 공정을 이용한 고농도 NH4+-N 함유 침출수의 생물학적 질산화/탈질)

  • Won, Jong-Choul;Namkoong, Wan;Bae, Young-Shin;Lee, Kyung-Shin;Park, Ki-Hyuk;Song, Su-Sung;Yoon, Cho-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1027-1035
    • /
    • 2000
  • This study was carried out to investigate the treatability of landfill leachate having high concentration of ammonium nitrogen with/without the circulation of media in pilot-scale($48m^3basis$) process. Total nitrogen removal efficiency was relatively increased in the media added process (influent ; $1.230{\sim}2,000mg{\cdot}l^{-1}$, effluent ; $120{\sim}250mg{\cdot}l^{-1}$) compared with the control process. The difference of nitrogen removal efficiency between these processes may be due to that stable growth of nitrifiers attached to the media could be achieved 99.3% of ammonium-nitrogen removal efficiency(without ; 98.2%) and 88.5% of total nitrogen removal efficiency(without ; 85.8%) were shown in media added process, respectively. Also, optimum BOD/ $NH_4{^+}$-N ratio was relatively decreased in the media process compared with the control process. Sludge settleability, on the other hand. was shown better in media added process than in control process. This outstanding sludge settleability in the media added process indicates the compatibility of media(zeolite) to the microorganism and the possibility of using media of biofilm process.

  • PDF

Nitrogen Removal from Milking Center Wastewater via Simultaneous Nitrification and Denitrification Using a Biofilm Filtration Reactor

  • Won, Seung-Gun;Jeon, Dae-Yong;Kwag, Jung-Hoon;Kim, Jeong-Dae;Ra, Chang-Six
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.896-902
    • /
    • 2015
  • Milking center wastewater (MCW) has a relatively low ratio of carbon to nitrogen (C/N ratio), which should be separately managed from livestock manure due to the negative impacts of manure nutrients and harmful effects on down-stream in the livestock manure process with respect to the microbial growth. Simultaneous nitrification and denitrification (SND) is linked to inhibition of the second nitrification and reduces around 40% of the carbonaceous energy available for denitrification. Thus, this study was conducted to find the optimal operational conditions for the treatment of MCW using an attached-growth biofilm reactor; i.e., nitrogen loading rate (NLR) of 0.14, 0.28, 0.43, and $0.58kg\;m^{-3}\;d^{-1}$ and aeration rate of 0.06, 0.12, and $0.24\;m^3\;h^{-1}$ were evaluated and the comparison of air-diffuser position between one-third and bottom of the reactor was conducted. Four sand packed-bed reactors with the effective volume of 2.5 L were prepared and initially an air-diffuser was placed at one third from the bottom of the reactor. After the adaptation period of 2 weeks, SND was observed at all four reactors and the optimal NLR of $0.45kg\;m^{-3}\;d^{-1}$ was found as a threshold value to obtain higher nitrogen removal efficiency. Dissolved oxygen (DO) as one of key operational conditions was measured during the experiment and the reactor with an aeration rate of $0.12\;m^3\;h^{-1}$ showed the best performance of $NH_4-N$ removal and the higher total nitrogen removal efficiency through SND with appropriate DO level of ${\sim}0.5\;mg\;DO\;L^{-1}$. The air-diffuser position at one third from the bottom of the reactor resulted in better nitrogen removal than at the bottom position. Consequently, nitrogen in MCW with a low C/N ratio of 2.15 was successfully removed without the addition of external carbon sources.