• Title/Summary/Keyword: nitride ceramic materials

Search Result 151, Processing Time 0.022 seconds

Epitaxial Growth of Three-Dimensional ZnO and GaN Light Emitting Crystals

  • Yang, Dong Won;Park, Won Il
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.108-115
    • /
    • 2018
  • The increasing demands for three-dimensional (3D) electronic and optoelectronic devices have triggered interest in epitaxial growth of 3D semiconductor materials. However, most of the epitaxially-grown nano- and micro-structures available so far are limited to certain forms of crystal arrays, and the level of control is still very low. In this review, we describe our latest progress in 3D epitaxy of oxide and nitride semiconductor crystals. This paper covers issues ranging from (i) low-temperature solution-phase synthesis of a well-regulated array of ZnO single crystals to (ii) systematic control of the axial and lateral growth rate correlated to the diameter and interspacing of nanocrystals, as well as the concentration of additional ion additives. In addition, the critical aspects in the heteroepitaxial growth of GaN and InGaN multilayers on these ZnO nanocrystal templates are discussed to address its application to a 3D light emitting diode array.

Effect of Elastic Modulus Mismatch on the Contact Crack Initiation in Hard Ceramic Coating Layer

  • Lee, Kee-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1928-1937
    • /
    • 2003
  • Effect of elastic modulus mismatch on the contact crack initiation is investigated to find major parameters in designing desirable surface-coated system. Silicon nitride coated soft materials with various elastic modulus mismatch, E$\_$c//E$\_$s/=1.06∼356 are prepared for the analysis. Hertzian contact test is conducted for producing contact cracks and the acoustic emission detecting technique for measuring the critical load of crack initiation. The implication is that coating thickness and material strength are controllable parameters to prevent the initiation of contact cracks resulted from the elastic modulus mismatch in the hard ceramic coating layer on the soft materials.

Synthesis of Aluminum Nitride Whisker by Carbothermal Reaction I. Effect of Fluoride Addition (탄소환원질화법을 이용한 AIN Whisker의 합성 I. 불화물 첨가의 영향)

  • 양성구;강종봉
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.118-124
    • /
    • 2004
  • The properties of AlN made by carbothermal reaction depend on the starting materials, quantity of liquid, the liquid-vapor phase reaction, the N$_2$ flow rate, and the reaction temperature. AlN whisker was synthesized by the VLS and VS methods. Solid ${\alpha}$-A1$_2$O$_3$(AES-11) was carbothermally reduced with carbon black in a high-purity N$_2$ atmosphere with AlF$_3$ to cause whisker grown and additional aluminum liquid to increase whisker yield. Aluminum nitride was perfectly formed at reaction temperatures of 1600$^{\circ}C$. At reaction temperature higher than 1600$^{\circ}C$ the aluminum nitride was completely formed, while the composition remains unaffected. Needle-shaped whiskers formed best at 1600$^{\circ}C$ while higher temperatures disrupted whisker formation. Adding 0 to 15 wt% aluminum to the synthesis favorably affects the microstructure for formation of needle-shaped AlN whisker. Additions over 15 wt% degraded formation of AlN whisker.

Cutting Characteristics on Rake Angle in Laser-Assisted Machining of Silicon Nitride (질화규소의 예열선삭가공시 경사각에 따른 절삭특성)

  • Shin, Dong-Sig;Lee, Jae-Hoon;Lim, Se-Hwan;Kim, Jong-Do;Lee, Su-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.47-54
    • /
    • 2009
  • In the last few years, lasers have found new applications as tools for ceramic machining which is laser-assisted machining(LAM). LAM process for the machining of difficult-to-machine materials such as structural ceramics, has recently been studied on silicon nitride workpiece for a wide range of operating condition. However, there have been few studies on rake angle in LAM process. In this paper we analyzed difference of machinability between positive and negative rake angle in tools. We have obtained interesting results that we could eliminate chattering, lower specific cutting and cutting ratio in case of positive rake angle. The results suggest that positive rake angled tools can make more plastic deformation and stable cutting of silicon nitride in comparison with negative rake angled one.

A Study on the properties of aluminum nitride films on the Al7075 deposited by pulsed DC reactive magnetron sputtering

  • Kim, Jung-hyo;Cha, Byung-Chul;Lee, Keun-Hak;Park, Won-Wook
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.179-180
    • /
    • 2012
  • Aluminum alloys are widely known as non-ferrous metal with light weight and high strength. Consequently, these materials take center stage in the aircraft and automobile industry. The Al7075 aluminum alloy is based on the Al-Zn-Mg-Cu and one of the strongest wrought aluminum alloys. Aluminum nitride has ten times higher thermal conductivity($319W/m{\cdot}K$) than Al2O3 and also has outstanding electric insulation($1{\times}1014{\Omega}{\cdot}cm$). Furthermore, it has high mechanical property (430 MPa) even though its co-efficient of thermal expansion is less than alumina For these reasons, it has great possibilities to be used for not only the field which needs high strength lightweight but also electronic material field because of its suitability to be applied to the insulator film of PCB or wafer of ceramic with high heat conduction. This paper investigates the mechanical properties and corrosion behavior of aluminum alloy Al7075 deposited with aluminum nitride thin films To improve the surface properties of Al7075 with respect to hardness, and resistance to corrosion, aluminum nitride thin films have been deposited by pulsed DC reactive magnetron sputtering. The pulsed DC power provides arc-free deposition of insulating films.

  • PDF

A Study on the Microstructural, Thermal and Mechanical Properties of Silicon Nitride Ceramic

  • Kim, Jong-Do;Lee, Su-Jin;Lee, Jae-Hoon;Sano, Yuji
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.1026-1033
    • /
    • 2009
  • Fine ceramics have high strength, excellent wear resistance, chemical stability and high strength at high temperature and are receiving attention in various fields such as construction, engineering, aerospace and marine science. Finish machining process is required to obtain precise ceramics components because sintering process necessary for obtaining high strength and high quality ceramics reduces the dimensions of components and precision of shape. But high strength and brittleness of ceramics materials cause difficulty in processing. So a process for obtaining wanted dimensions is studying using high temperature which makes ceramics softened and thermal affected recently. Laser beam is a very useful optical device for these kinds of processes. Laser process such as laser cutting, laser machining, laser heat treatment and laser-assisted machining(LAM) is researching to manufacture practical ceramics components using intense laser source which can cause local softening and damage of workpiece. In this paper, microstructural and mechanical properties of silicon nitride heated are studied as a basic study for researching of ceramics process by laser beam. The surface variation of HIP and SSN-silicon nitride was analyzed with SEM and EDS. A processing at $1,300^{\circ}C$ or above causes N element to combine into $N_2$ gas and the gas busts from surface. These phenomena make bloat, craters and heat defects on the surface of silicon nitride. Also, oxygen content is largely increased to oxidize the surface and it causes changing of phases and reducing of hardness of surface.

Effects of Debinding Atmosphere on Properties of Sintered Reaction-bonded Si3N4 Prepared by Tape Casting Method

  • Park, Ji-Sook;Lee, Sung-Min;Han, Yoon-Soo;Hwang, Hae-Jin;Ryu, Sung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.622-627
    • /
    • 2016
  • The effects of the debinding atmosphere on the properties of sintered reaction-bonded $Si_3N_4$ (SRBSN) ceramics prepared by tape casting method were investigated. Si green tape was produced from Si slurry of Si powder, using 11.5 wt% polyvinyl butyral as the organic binder and 35 wt% dioctyl phthalate as the plasticizer. The debinding process was conducted in air and $N_2$ atmospheres at $400^{\circ}C$ for 4 h. The nitridation process of the debinded Si specimens was performed at $1450^{\circ}C$, followed by sintering at $1850^{\circ}C$ and 20 MPa. The results revealed that the debinding atmosphere had a significant effect on $Si_3N_4$ densification and thermal conductivity. Owing to the higher sintered density and larger grain size, the thermal conductivity of $Si_3N_4$ specimens debinded in air was higher than that of the samples debinded in $N_2$. Thus, debinding in air could be suitable for the manufacture of high-performance SRBSN substrates by tape casting.

Electrical Properties of DC Sputtered Titanium Nitride Films with Different Processing Conditions and Substrates

  • Jin, Yen;Kim, Young-Gu;Kim, Jong-Ho;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.7 s.278
    • /
    • pp.455-460
    • /
    • 2005
  • Deposition of TiN$_{x}$ film was conducted with a DC sputtering technique. The effect of the processing parameters such as substrate temperature, deposition time, working pressure, bias power, and volumetric flowing rate ratio of Ar to N$_{2}$ gas on the resistivity of TiN$_{x}$ film was systematically investigated. Three kinds of substrates, soda-lime glass, (100) Si wafer, and 111m thermally grown (111) SiO$_{2}$ wafer were used to explore the effect of substrate. The phase of TiN$_{x}$ film was analyzed by XRD peak pattern and deposition rate was determined by measuring the thickness of TiNx film through SEM cross-sectional view. Resistance was obtained by 4 point probe method as a function of processing parameters and types of substrates. Finally, optimum condition for synthesizing TiN$_{x}$ film having lowest resistivity was discussed.

Thermal Conductivity of Thermally Conductive Ceramic Composites and Silicon Carbide/Epoxy Composites through Wetting Process (세라믹 방열 복합체의 열전도도 분석 및 Wetting Process를 이용한 SiC/에폭시 복합체)

  • Hwang, Yongseon;Kim, Jooheon;Cho, WonChul
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.782-786
    • /
    • 2014
  • Various kinds of thermal conductive ceramic/polymer composites (aluminum nitride, aluminum oxide, boron nitride, and silicon carbide/epoxy) were prepared by a casting method and their optical images were observed by FE-SEM. Among these, SiC/epoxy composite shows inhomogeneous dispersion features of SiC and air voids in the epoxy matrix layer, resulting in undesirable thermal conductive properties. To enhance the thermal conductivities of SiC/epoxy composites, the epoxy wetting method which can directly infiltrate the epoxy droplet onto filtrated SiC cake was employed to fabricate the homogeneously dispersed SiC/epoxy composite for ideal thermal conductive behavior, with maximum thermal conductivity of 3.85W/mK at 70 wt% of SiC filler contents.

The Effect of Si3N4 Addition on Nitriding and Post-Sintering Behavior of Silicon Powder Mixtures

  • Park, Young-Jo;Ko, Jae-Woong;Lee, Jae-Wook;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.363-368
    • /
    • 2012
  • Nitriding and post-sintering behavior of powder mixture compacts were investigated. As mixture compacts are different from simple Si compacts, the fabrication of a sintered body with a mixture composition has engineering implications. In this research, in specimens without a pore former, the extent of nitridation increased with $Si_3N_4$ content, while the highest extent of nitridation was measured in $Si_3N_4$-free composition when a pore former was added. Large pores made from the thermal decomposition of the pore former collapsed, and they were filled with a reaction product, reaction-bonded silicon nitride (RBSN) in the $Si_3N_4$-free specimen. On the other hand, pores from the decomposed pore former were retained in the $Si_3N_4$-added specimen. Introduction of small $Si_3N_4$ particles ($d_{50}=0.3{\mu}m$) into a powder compact consisting of large silicon particles ($d_{50}=7{\mu}m$) promoted close packing in the green body compact, and resulted in a stable strut structure after decomposition of the pore former. The local packing density of the strut structure depends on silicon to $Si_3N_4$ size ratio and affected both nitriding reaction kinetics and microstructure in the post-sintered body.