• Title/Summary/Keyword: nitride ceramic materials

Search Result 151, Processing Time 0.026 seconds

Improvement of Oxidation Resistance by Coating on C/BN Composites

  • Kim, Dong-Pyo;Park, Hee-Dong;Lee, Jae-Do
    • The Korean Journal of Ceramics
    • /
    • v.1 no.3
    • /
    • pp.155-159
    • /
    • 1995
  • Borosilicate, $B_2O_3$ and BN derived from liquid precursors have been tested as shielding materials for the long period of oxidation resistance of C/BN composites at $650^{\circ}C$. Borosilicate coating displayed excellent oxidation resistance and low moisture absorbance, while $B_2O_3$ and BN were less effective in elevating the oxidation resistance. The enhancement of the oxidation resistance was explained as self-healing effect by viscous flow of the borosilicate glass over Tg, resulting in the reduction of the exposed carbon fibers in a BN matrix.

  • PDF

High Precision and Effective Grinding using Super Abrasives and ELID (초연삭입자와 ELID를 이용한 고정밀 고능률 연삭가공)

  • Koo, Yang;Kim, Gyung-Nyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.25-32
    • /
    • 2003
  • In this study, the grinding characteristics of CBN wheels, such as grinding force and surface roughness, have been compared and analyzed from various working conditions of spindle speed and depth of cut. To actualize high efficient grinding at ceramic and silicon nitride material, electrolytic in-process dressing (ELID) method has been applied at metal bonded diamond and CBN wheels. Super precision grinding using ductile mode at difficult-ta-cut materials could be performed.

  • PDF

Evaporation characteristics of materials from resistive heating sources(I) (저항가열원에 의한 물질의 증발특성(I))

  • 정재인;임병문;문종호;홍재화;강정수;이영백
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.1
    • /
    • pp.25-30
    • /
    • 1991
  • The evaporation characteristics of Ag, Al, Au, Cr. Cu, In, Mg, Mn, Pb, Pd, Si, SiO, Sn, Ti and Zn with the various resistive heating sources have been studied. The employed sources are refractory metal (Mo, Ta and W) boats, W-wire, ceramic (usually Al2O3)-coated and -barriered refractory metal boats, and special boats such as baffled boats and intermetallic boats (nitride compound and graphite). We investigated the melting mode, evaporation rate at a specific power, and lifetime of the sources. A special boat holder is also discussed which is needed to cool the sources at a large heat capacity.

  • PDF

Effect of TiAIN-based Nanoscale Multilayered Coating on the Cutting Performance of WC-Co Insert (WC-CO 인써트의 절삭 성능에 미치는 TiAIN계 나노 다층막 코팅의 영향)

  • Lim Hee-Youl;Park Jong-Keuk;Kim Kyung-Bae;Choi Doo-Jin;Baik Young-Joon
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.110-116
    • /
    • 2006
  • The mechanical property and cutting performance of the cutting tools coated with nanoscale nyktukatered nitride film have been investigated. $Ti_{0.54}Al_{0.46}N-CrN$ and $Ti_{0.84}Al_{0.16}N-NlN$ systems, which showed super-lattice in nanoscale multilayered coating, were deposited on WC-Co insert by UBM sputtering, The superlattice coatings with different bilayer periods were manufactured by controlling deposition parameters. The superlattice formation and hardness of the nanoscale multilayered nitride film and the cutting performance of the insert coated with the film were examined. The hardness and cutting performance were dependent on the bilayer periods of the coatings. The flank wear of the inserts with superlattice coatings were decreased over $20\%$, compared to those of commonly used cutting tools coated with TiAIN single phase.

Effect of Slurry Characteristics on Nanotopography Impact in Chemical Mechanical Polishing and Its Numerical Simulation (기계.화학적인 연마에서 슬러리의 특성에 따른 나노토포그래피의 영향과 numerical시뮬레이션)

  • Takeo Katoh;Kim, Min-Seok;Ungyu Paik;Park, Jea-Gun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.63-63
    • /
    • 2003
  • The nanotopography of silicon wafers has emerged as an important factor in the STI process since it affects the post-CMP thickness deviation (OTD) of dielectric films. Ceria slurry with surfactant is widely applied to STI-CMP as it offers high oxide-to-nitride removal selectivity. Aiming to control the nanotopography impact through ceria slurry characteristics, we examhed the effect of surfactant concentration and abrasive size on the nanotopography impact. The ceria slurries for this study were produced with cerium carbonate as the starting material. Four kinds of slurry with different size of abrasives were prepared through a mechanical treatment The averaged abrasive size for each slurry varied from 70 nm to 290 nm. An anionic organic surfactant was added with the concentration from 0 to 0.8 wt %. We prepared commercial 8 inch silicon wafers. Oxide Shu were deposited using the plasma-enhanced tetra-ethyl-ortho-silicate (PETEOS) method, The films on wafers were polished on a Strasbaugh 6EC. Film thickness before and after CMP was measured with a spectroscopic ellipsometer, ES4G (SOPRA). The nanotopogrphy height of the wafer was measured with an optical interferometer, NanoMapper (ADE Phase Shift)

  • PDF

Micromachinng and Fabrication of Thin Filmes for MEMS-infrarad Detectors

  • Hoang, Geun-Chang;Yom, Snag-Seop;Park, Heung-Woo;Park, Yun-Kwon;Ju, Byeong-Kwon;Oh, Young-Jei;Lee, Jong-Hoon;Moonkyo Chung;Suh, Sang-Hee
    • The Korean Journal of Ceramics
    • /
    • v.7 no.1
    • /
    • pp.36-40
    • /
    • 2001
  • In order to fabricate uncooled IR sensors for pyroelectric applications, multilayered thin films of Pt/PbTiO$_3$/Pt/Ti/Si$_3$N$_4$/SiO$_2$/Si and thermally isolating membrane structures of square-shaped/cantilevers-shaped microstructures were prepared. Cavity was also fabricated via direct silicon wafer bonding and etching technique. Metallic Pt layer was deposited by ion beam sputtering while PbTiO$_3$ thin films were prepared by sol-gel technique. Micromachining technology was used to fabricate microstructured-membrane detectors. In order to avoid a difficulty of etching active layers, silicon-nitride membrane structure was fabricated through the direct bonding and etching of the silicon wafer. Although multilayered thin film deposition and device fabrications were processed independently, these could b integrated to make IR micro-sensor devices.

  • PDF

Effect of the Whisker Amount and Orientation on Mechanical Properties of the Si$_3$N$_4$ based Composites (Si$_3$N$_4$ Whisker의 첨가량과 배열방향이 Si$_3$N$_4$ 복합 소결체의 기계적 특성에 미치는 영향)

  • Kim, Chang-Won;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.43-49
    • /
    • 1999
  • Gas pressure sintered silicon nitride based composites with 0~5wt% $\beta$-Si3N4 whiskers were prepared. The whiskers were unidirectionally oriented by a modified tape casting technqiue and green bodies with various microstructure were formed by changing stacking sequences of sheets cut from the tape. Orientations of the large elongated grains of the sample after gas pressure sintering were the same as the those of the whiskers of green body, and the sintering shrinkage and mechanical properties of sintered sample were consistent with the microstructural characteristics. In case of unidirectional samples, the sintering shrinkage normal to whisker alignment direction was larger than that parallel to the direction. The shrinkage difference inceaed as the whiskercontent increaed. As whisker content increaed, the crack length normal to and parallel to tape casting direction became shorter and larger, respectively. Although the grain size increased by th whisker addition, the flexural strength of unidirectional samples was not lower than that of smaple without the whisker. In case of crossplied and 45$^{\circ}$rotated samples, the anisotropy of mechanical preoperties disappeared.

  • PDF

A study on the design and cooling of the heat sink with hybrid structure of conductive polymer composite and metal (열전도성 고분자 복합소재/금속 소재 하이브리드 구조의 방열기구 설계 및 방열특성에 관한 연구)

  • Yoo, Yeong-Eun;Kim, Duck Jong;Yoon, Jae Sung;Park, Si-Hwan
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.14-19
    • /
    • 2016
  • Thermally or electrically conductive filler reinforced polymer composites are extensively being developed as the demand for light weight material increases rapidly in industiral applications need good conductivity such as heat sink of the electronics or light. Carbon or ceramic materials like graphite, carbon nanotube or boron nitride are typical conductive fillers with good thermal or electical conductivity. Using these conductive fillers, the polymer composites in the market show wide range of thermal conductivity from approximately 1 W/mK to 20 W/mK, which is quite enhanced considering the thermal conductivity lower than 0.5 W/mK for most polymeric materials. The practical use of these composites, however, is yet limited to specific applications because most composites are still not conductive enough or too difficult to process, too brittle, too expensive for higher conductivity. For practical use of conductive composite, the thermal conductivity required depending on the heat releasing mode are studied first for simplified unit cooling geometry to propose thermal conductivities of the composites for reasonable cooling performance comparing with the metal heat sink as a reference. Also, as a practical design for heat sink based on polymer composite, composite and metal sheet hybrid structures are investigated for LED lamp heat sink and audio amplication module housing to find that this hybrid structure can be a good solution considering all of the cooling performance, manufacturing, mechanical performance, cost and weight.

Observation of Thermal Conductivity of Pressureless Sintered AlN Ceramics under Control of Y2O3 Content and Sintering Condition (Y2O3 함량과 소결조건에 따른 상압소결 AlN 세라믹스의 열전도도 고찰)

  • Na, Sang-Moon;Go, Shin-Il;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.368-372
    • /
    • 2011
  • Aluminum nitride (AlN) has excellent thermal conductivity, whereas it has some disadvantage such as low sinterability. In this study, the effects of sintering additive content and sintering condition on thermal conductivity of pressureless sintered AlN ceramics were examined on the variables of 1~3 wt% sintering additive ($Y_2O_3$) content at $1900^{\circ}C$ in $N_2$ atmosphere with holding time of 2~10 h. All AlN specimens showed higher thermal conductivity as the $Y_2O_3$ content and holding time increase. The formation of secondary phases (yttrium aluminates) by reaction of $Y_2O_3$ and $Al_2O_3$ from AlN surface promoted the thermal conductivity of AlN specimens, because the secondary phases could reduce the oxygen contents in AlN lattice. Also, thermal conductivity was increased by long sintering time because of the uniform distribution and the elimination of the secondary phases at the grain boundary by the evaporation effect during long holding time. A carbothermal reduction reaction was also affected on the thermal conductivity. The thermal conductivity of AlN specimens sintered at $1900^{\circ}C$ for 10 h showed 130~200W/mK according to the content of sintering additive.

Minimization of Recombination Losses in 3D Nanostructured TiO2 Coated with Few Layered g-C3N4 for Extended Photo-response

  • Kang, Suhee;Pawar, Rajendra C.;Park, Tae Joon;Kim, Jin Geum;Ahn, Sung-Hoon;Lee, Caroline Sunyong
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.393-399
    • /
    • 2016
  • We have successfully fabricated 3D (3-dimensional) nanostructures of $TiO_2$ coated with a $g-C_3N_4$ layer via hydrothermal and sintering methods to enhance photoelectrochemical (PEC) performance. Due to the coupling of $TiO_2$ and $g-C_3N_4$, the nanostructures exhibited good performance as the higher conduction band of $g-C_3N_4$, which can be combined with $TiO_2$. To fabricate 3D nanostructures of $g-C_3N_4/TiO_2$, $TiO_2$ was first grown as a double layer structure on FTO (Fluorine-doped tin oxide) substrate at $150^{\circ}C$ for 3 h. After this, the $g-C_3N_4$ layer was coated on the $TiO_2$ film at $520^{\circ}C$ for 4 h. As-prepared samples were varied according to loading of melamine powder, with values of loading of 0.25 g, 0.5 g, 0.75 g, and 1 g. From SEM and TEM analysis, it was possible to clearly observe the 3D sample morphologies. From the PEC measurement, 0.5 g of $g-C_3N_4/TiO_2$ film was found to exhibit the highest current density of $0.12mA/cm^2$, along with a long-term stability of 5 h. Compared to the pristine $TiO_2$, and to the 0.25 g, 0.75 g, and 1 g $g-C_3N_4/TiO_2$ films, the 0.5 g of $g-C_3N_4/TiO_2$ sample was coated with a thin $g-C_3N_4$ layer that caused separation of the electrons and the holes; this led to a decreasing recombination. This unique structure can be used in photoelectrochemical applications.