• Title/Summary/Keyword: nitric oxide/cGMP

Search Result 102, Processing Time 0.018 seconds

Inhibition of eNOS/sGC/PKG Pathway Decreases Akt Phosphorylation Induced by Kainic Acid in Mouse Hippocampus

  • Lee, Sang-Hyun;Byun, Jong-Seon;Kong, Pil-Jae;Lee, Hee-Jae;Kim, Duk-Kyung;Kim, Hae-Sung;Sohn, Jong-Hee;Lee, Jae-Jun;Lim, So-Young;Chun, Wan-Joo;Kim, Sung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • The serine/threonine kinase Akt has been shown to play a role of multiple cellular signaling pathways and act as a transducer of many functions initiated by growth factor receptors that activate phosphatidylinositol 3-kinase (PI3K). It has been reported that phosphorylated Akt activates eNDS resulting in the production of NO and that NO stimulates soluble guanylate cyclase (sGC), which results in accumulation of cGMP and subsequent activation of the protein kinase G (PKG). It has been also reported that PKG activates PI3K/Akt signaling. Therefore, it is possible that PI3K, Akt, eNOS, sGC, and PKG form a loop to exert enhanced and sustained activation of Akt. However, the existence of this loop in eNOS-expressing cells, such as endothelial cells or astrocytes, has not been reported. Thus, we examined a possibility that Akt phosphorylation might be enhanced via eNOS/sGC/PKG/PI3K pathway in astrocytes in vivo and in vitro. Phosphorylation of Akt was detected in astrocytes after KA treatment and was maintained up to 72 h in mouse hippocampus. 2 weeks after KA treatment, astrocytic Akt phosphorylation was normalized to control. The inhibition of eNOS, sGC, and PKG significantly decreased Akt and eNDS phosphorylation induced by KA in astrocytes. In contrast, the decreased phosphorylation of Akt and eNDS by eNDS inhibition was significantly reversed with PKG activation. The above findings in mouse hippocampus were also observed in primary astrocytes. These data suggest that Akt/eNOS/sGC/PKG/PI3K pathway may constitute a loop, resulting in enhanced and sustained Akt activation in astrocytes.

The Effect of NO Donor on Contraction, Cytosolic $Ca^{2+}$ Level and Ionic Currents in Guinea-pig Ileal Smooth Muscle

  • Kwon, Seong-Chun;Park, Ki-Young;Ahn, Duck-Sun;Lee, Young-Ho;Kang, Bok-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.1
    • /
    • pp.33-40
    • /
    • 2000
  • This study was designed to clarify the mechanism of the inhibitory action of a nitric oxide (NO) donor, 3-morpholino-sydnonimine (SIN-1), on contraction, cytosolic $Ca^{2+}$ level $([Ca^{2+}]_i)$ and ionic currents in guinea-pig ileum. SIN-1 $(0.01{\sim}100\;{\mu}M)$ inhibited 25 mM KCl- or histamine $(10\;{\mu}M)-induced$ contraction in a concentration-dependent manner. SIN-1 reduced both the 25 mM KCl- and the histamine-stimulated increases in muscle tension in parallel with decreased $[Ca^{2+}]_i.$ Using the patch clamp technique with a holding potential of -60 mV, SIN-1 $(10\;{\mu}M)$ decreased peak Ba currents $(I_{Ba})$ by $30.9{\pm}5.4%$ (n=6) when voltage was stepped from -60 mV to +10 mV and this effect was blocked by ODQ $(1\;{\mu}M),$ a soluble guanylyl cyclase inhibitor. Cu/Zn SOD (100 U/ml), the free radical scavenger, had little effect on basal $I_{Ba},$ and SIN-1 $(10\;{\mu}M)$ inhibited peak $I_{Ba}$ by $32.4{\pm}5.8%$ (n=5) in the presence of Cu/Zn SOD. In a cell clamped at a holding-potential of -40 mV, application of $10\;{\mu}M$ histamine induced an inward current. The histamine-induced inward current was markedly and reversibly inhibited by $10\;{\mu}M$ SIN-1, and this effect was abolished by ODQ $(1\;{\mu}M).$ In addition, SIN-1 markedly increased the depolarization-activated outward $K^+$ currents in the all potential ranges. We concluded that SIN-1 inhibits smooth muscle contraction mainly by decreasing $[Ca^{2+}]_i$ resulted from the inhibition of L-type $Ca^{2+}$ channels and the inhibition of nonselective cation currents and/or by the activation of $K^+$ currents via a cGMP-dependent pathway.

  • PDF