• Title/Summary/Keyword: nitrate precursor

Search Result 119, Processing Time 0.029 seconds

Oxygen-Response Ability of Hydrogen-Reduced Nanocrystalline Cerium Oxide

  • Lee, Dong-Won
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.250-255
    • /
    • 2011
  • The potential application of ultrafine cerium oxide (ceria, $CeO_2$) as an oxygen gas sensor has been investigated. Ceria was synthesized by a thermochemical process: first, a precursor powder was prepared by spray drying cerium-nitrate solution. Heat treatment in air was then performed to evaporate the volatile components in the precursor, thereby forming nanostructured $CeO_2$ having a size of approximately 20 nm and specific surface area of 100 $m^2/g$. After sintering with loosely compacted samples, hydrogen-reduction heat treatment was performed at 773K to increase the degree of non-stoichiometry, x, in $CeO_{2-x}$. In this manner, the electrical conductivity and oxygen-response ability could be enhanced by increasing the number of oxygen vacancies. After the hydrogen reduction at 773K, $CeO_{1.5}$ was obtained with nearly the same initial crystalline size and surface. The response time $t_{90}$ measured at room temperature was extremely short at 4 s as compared to 14 s for normally sintered $CeO_2$. We believe that this hydrogen-reduced ceria can perform capably as a high-performance oxygen sensor with good response abilities even at room temperature.

Distribution of Silver Particles in Silver-containing Activated Carbon Fibers

  • Ryu, S.K.;Eom, S.Y.;Cho, T.H.;Edie, D.D.
    • Carbon letters
    • /
    • v.4 no.4
    • /
    • pp.168-174
    • /
    • 2003
  • Silver nitrate ($AgNO_3$) powder was mixed into a reformed pitch precursor. Then, the silver-containing pitch was melt spun to form round and "C" shape fibers. A wire mesh was inserted prior to the nozzle to improve the spinnability of the silvercontaining precursor pitch. Silver particles in the carbon fibers (CFs) were detected by XRD and TEM. These tests showed that silver particles were uniformly distributed and the total amount of silver remained constant during stabilization and carbonization. Next, the silver-containing CFs were activated by steam diluted in nitrogen gas. Silver particles accelerated the activation rate, but the specific surface areas of the silver-containing ACFs were similar to those of non-silver containing ACFs at the same burn-off levels. The specific surface area of the C-shaped activated carbon fibers was larger than that of the round activated carbon fibers. The likely reason is that the surface area of a C-shaped CF is about two times larger than that of a round CF when equivalent cross-sectional areas are compared. A small amount of silver particles in the periphery of the CFs was removed during the activation, but the remainder of silver was stayed within the ACFs.

  • PDF

Template-free Synthesis and Characterization of Spherical Y3Al5O12:Ce3+ (YAG:Ce) Nanoparticles

  • Kim, Taekeun;Lee, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2917-2921
    • /
    • 2014
  • Cerium-activated yttrium aluminate ($Y_3Al_5O_{12}:Ce^{3+}$) exhibiting a garnet structure has been widely utilized in the production of light emitting diodes (LEDs) as a yellow emitting phosphor. The commercialized yttrium aluminum garnet (YAG) phosphor is typically synthesized by a solid-state reaction, which produces irregular shape particles with a size of several tens of micrometers by using the top-down method. To control the shape and size of particles, which had been the primary disadvantage of top-down synthetic methods, we synthesized YAG:Ce nanoparticles with a diameter of 500 nm using a coprecipitation method under the atmospheric pressure without the use of template or special equipment. The precursor particles were formed by refluxing an aqueous solution of the nitrate salts of Y, Al, and Ce, urea, and polyvinylpyrrolidone (55 K) at $100^{\circ}C$ for 12 h. YAG:Ce nanoparticles were formed by the calcination of precursor particles at $1100^{\circ}C$ for 10 h under atmospheric conditions. The phase identification, microstructure, and photoluminescent properties of the products were evaluated by X-ray powder diffraction, scanning electron microscopy, absorption spectrum and photoluminescence analyses.

Magnetic Properties of Hard/Soft Nanocomposite Ferrite Synthesized by Self-Combustion Precursors (자전 연소 전구체로 합성한 나노 크기 경/연 복합페라이트의 자기 특성)

  • Oh, Young Woo;Ahn, Jong Gyeon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.45-50
    • /
    • 2015
  • The goal of this research is the create novel magnets with no rare-earth contents, with larger energy product by comparison with currently used ferrites. For this purpose we developed nano-sized hard-type/soft-type composite ferrite in which high remanent magnetization (Mr) and high coercivity (Hc). Nano-sized Ba-ferrite, Ni-Zn ferrite and $BaFe_{12}O_{19}/Ni_{0.5}Zn_{0.5}Fe_2O_4$ composite ferrites were prepared by sol-gel combustion method by use of glicine-nitrate and citric acid. Nanocomposite ferrites were calcined at temperature range $700-900^{\circ}C$ for 1h. According to the X-ray diffraction patterns and FT-IR spectra, single phase of NiZn-ferrite and Ba-ferrite were detected and hard/soft nanocomposite ferrite was indicated to the coexistence of the magnetoplumbite-structural $BaFe_{12}O_{19}$ and spinel-structural $Ni_{0.5}Zn_{0.5}Fe_2O_4$ that agreed with the standard JCPDS 10-0325 data. The particle size of nanocomposite turn out to be less than 120 nm. The nanocomposite ferrite shows a single-phase magnetization behavior, implying that the hard magnetic phase and soft magnetic phase were well exchange-coupled. The specific saturation magnetization ($M_s$) of the nanocomposite ferrite is located between hard ($BaFe_{12}O_{19}$) and soft ferrite($Ni_{0.5}Zn_{0.5}Fe_2O_4$). The remanence (Mr) of nanocomposite ferrite is much higher than that of the individual $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ ferrite, and $(BH)_{max}$ is increased slightly.

Cathode Characteristics in the Synthesis of $(La,\;Sr)MnO_{3+{\delta}$ of Precursor ($(La,\;Sr)MnO_{3+{\delta}$ 합성에 있어서 출발물질에 따른 양극특성)

  • Lee, Mi-Jai;Kim, Sei-Ki;Ji, Mi-Jung;Choi, Byung-Hyun;Park, Sang-Sun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.360-363
    • /
    • 2006
  • We synthesized $(La,\;Sr)MnO_{3+{\delta}$ as a cathode for SOFC by glycine nitrate process(GNP) and knew the different properties of $(La_{1-x}Sr_x)MnO_3$ by using nitrate solution and oxide solution as starting material. In case of using nitrate solution as a starting material, main crystal phase peak of $LaMnO_3$ increased as Sr content added up and a peak of $Sr_2MnO_4\;and\;La_2O_3$ was showed as a secondary phase. We added Mn excess to control a crystal phase. In this case, the electrical conductivity had a high value 210.3S/cm at $700^{\circ}C$ On the other side, when we used oxide solution as a starting material, we found main crystal phase of $LnMnO_3$ to increase as Sr content added up and a peak of $La_2O_3$ as a secondary phase. Similary, we added Mn excess to control a crystal phase in this case. We knew $(La,\;Sr)MnO_3$ powder to sinter well and the electrical conductivity of the sintered body at $1200^{\circ}C$ for 4hrs was 152.7s/cm at $700^{\circ}C$. The sintered $(La,\;Sr)MnO_3$ powder at $1000^{\circ}C$ for 4hrs got the deoxidization peak, depending on the temperature md in case of using nitrate solution as a start ing material the deoxidization peak was showed at $450^{\circ}C$ which is lower than used a oxide solution as a starting material. As a result, when $(La,\;Sr)MnO_3$ powder was synthesized to add Mn excess and to use nitrate solution as a starting material, we found it to have the higher deoxidization property and considered it as a cathode for m properly. And we found it to have different electrical conduct ivity the synthesized $(La,\;Sr)MnO_3$ powder by using different start ing materials like nitrate solution and oxide solution which influence a sintering density and crystal phase.

  • PDF

Synthesis Characteristics of ZnO Powder from Precursors Composed of Nitrate-Citrate Compounds (Nitrate-Citrate 혼합 전구체로부터 ZnO 입자의 합성반응 특성)

  • Yang, Si Woo;Lee, Seung Ho;Lim, Dae Ho;Yoo, Dong Jun;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.299-304
    • /
    • 2016
  • Characteristics of self-propagating reaction for the preparation of ZnO powder from precursors composed of nitrate and citrate compounds were examined. The ratio of C/N was maintained in range of 0.7~0.8 to initiate the self-propagating reaction between the reducing citrate and oxidizing nitrate groups. The samples were decomposed thermally by using TGA. The sudden decomposition occurred in the range of X > 0.5 in a very short time with a very sharp decrease of mass, indicating that the self-propagating reaction would occur. Friedman, Ozawa-Flynn-Wall and Vyazovkin methods were employed to predict the activation energy, reaction order and frequency factor of the reaction rate in the rate determining step of X < 0.5 range. The activation energy increased with increasing fractional conversion in the range of 46~130 (kJ/min). The reaction order decreased in the range of 2.9~0.9, while the frequency factor increased in the range of 85~278 ($min^{-1}$), respectively, with increasing the rate of temperature increase.

The formation of N-Nitrosamine in Commercial Cured Products 2. The effect of cooking methods on N-Nitrosamine formation in commercial Ham and Sausages (시판 식육제품 중 N-Nitrosamine의 생성 제2보. 조리방법이 햄 및 소시지의 N-Nitrosamine 생성에 미치는 영향)

  • 박계란;이수정;신정혜;성낙주;임상선
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.4
    • /
    • pp.406-411
    • /
    • 1998
  • Representive cured products such as ham and sausage produced in Korea were purchased at retail and cooked using heating tools such as a gas range (GR), an electric range (ER) and electric range after boiled (BE). Changes of N-nitrosamine (NA), nitrate and nitrite in the cured meats containing< $2.0\;\mu\textrm{g}/kg$ of N-nitrosodimethylamine (NDMA) were checked and analyzed during their cooking process. Contents of nitrate and nitrite in ham products prior to cooking were 2.0 and 1.8 mg/kg, respectively; their contents in regular hams were slightly increased, but those of nitrate in press hams were decreased while those of nitrite were increased during its cooking process. Their contents in sausage products were 1.8 and 0.9 mg/kg; those of nitrate were decreased, while nitrite were slightly increased during its cooking process. NDMA detected only NA in all the collected cured products. Changes of NDMA, regardless of cooking methods, tend to drastically increase in all samples after their cooking; Its contents were increased by average 6.0~70.7 times in the GR samples, by average 2.4~39.2 times in the ER samples and by average 7.0~56.3 times in the BE samples. Virtually, the fact that all of this nitrosamine appeared to arise by the action of precursor such as NOx was produced during the cooking of cured products.

  • PDF

Preparation and Surface treatment of Spherical $BaMgAl_{10}O_{17}:Eu^{2+}$ phosphor

  • Seo, Kyoung-Soo;Lee, Dae-Won;Jung, Ha-Kyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1079-1082
    • /
    • 2004
  • Dense $BaMgAl_{10}O_{17}:Eu^{2+}$ phosphor particles with a spherical shape have been synthesized through spray pyrolysis method using basic aluminum nitrate precursor as a spray solution. Also, a thin layer of silica on the surface of $BaMgAl_{10}O_{17}:Eu^{2+}$ particles were coated by hydrolysis reaction of alkoxide sources with the particles. The correlation between PL intensity and surface treatment by coating for the dense $BaMgAl_{10}O_{17}:Eu^{2+}$ particles have been investigated.

  • PDF

Synthesis of Nano-sized Tungsten Carbide - Cobalt Powder by Liquid Phase Method of Tungstate (텅스텐염의 액상법을 통한 초미립 WC-Co 분말의 합성)

  • Kim, Jong-Hoon;Park, Yong-Ho;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.332-339
    • /
    • 2011
  • Cemented tungsten carbide has been used in cutting tools and die materials, and is an important industrial material. When the particle size is reduced to ultrafine, the hardness and other mechanical properties are improved remarkably. Ultrafine cemented carbide with high toughness and hardness is now widely used. The objective of this study is synthesis of nanostructured WC-Co powders by liquid phase method of tungstate. The precursor powders were obtained by freezen-drying of aqueous solution of soluble salts, such as ammonium metatungstate, cobalt nitrate. the final compositions were WC-10Co. In the case of liquid phase method, it can be observed synthesis of WC-10Co. The properties of powder produced at various temperature, were estimated from the SEM, BET and C/S analyser.

Study on Solution Processed Indium-Yttrium-Oxide Thin-Film Transistors Using Poly (Methyl Methacrylate) Passivation Layer (PMMA 보호막을 이용한 용액 공정 기반의 인듐-이티륨-산화물 트랜지스터에 관한 연구)

  • Kim, Han-Sang;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.413-416
    • /
    • 2017
  • We investigated solution-processed indium-yttrium-oxide (IYO) TFTs using apoly (methyl methacrylate) (PMMA) passivation layer. The IYO semiconductor solution was prepared with 0.1 M indium nitrate hydrate and 0.1 M yttrium acetate dehydrate as precursor solutions. The solution-processed IYO TFTs showed good performance: field-effect mobility of $13.13cm^2/Vs$, a threshold voltage of 8.2 V, a subthreshold slope of 0.93 V/dec, and a current on-to-off ratio of $7.2{\times}10^6$. Moreover, the PMMA passivation layers used to protectthe IYO active layer of the TFTs, did so without deteriorating their performance under ambient conditions; their operational stability and electrical properties also improved by decreasing leakage current.