• Title/Summary/Keyword: nitrate concentration

Search Result 1,012, Processing Time 0.026 seconds

Bio-regeneration of Ion-exchange Resin for Treating Reverse Osmosis Concentrate (RO 농축폐액의 처리를 위한 이온교환수지의 생물재생)

  • Bae, Byung-Uk;Nam, Youn-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.517-523
    • /
    • 2014
  • In order to remove both nitrate and sulfate present in the concentrate of RO(reverse osmosis) process, a combined bio-regeneration and ion-exchange(IX) system was studied. For this purpose, both denitrifying bacteria(DNB) and sulfate reducing bacteria(SRB) were simultaneously cultivated in a bio-reactor under anaerobic conditions. When the IX column containing a nitrate-selective A520E resin was fully exhausted by nitrate and sulfate, the IX column was bio-regenerated by pumping the supernatant of the bio-reactor, which contains MLSS concentration of $125{\pm}25mg/L$, at the flowrate of 360 BV/hr. Even though the nitrate-selective A520E resin was used, the breakthrough curves of ionic species showed that sulfate was exhausted earlier than nitrate. The reason for this result is due to the fact that the concentration of sulfate in RO concentrate was 36 to 48 times higher than nitrate. The bio-reactor was successfully operated at a volumetric loading rate of 0.6 g $COD/l{\cdot}d$, nitrate-N loading rate of 0.13 g $NO_3{^-}-N/l{\cdot}d$, and sulfate loading rate of 0.08 g $SO_4{^{2-}}/l{\cdot}d$. The removal rate of SCOD, nitrate-N, sulfate was 90, 100, and 85%, respectively. When the virgin resin was fully exhausted and consecutively bio-regenerated for 2 days, 81% of nitrate and 93% of sulfate were reduced. When the virgin resin was repeatedly used up to 4 cycles of service and bio-regeneration, the ion-exchange capacity of bio-regenerated resin decreased to 95, 91, 88, and 81% of virgin resin.

Nitrate Removal by Pseudomonas fluorescens K4 Isolated from a Municipal Sewage Treatment Plant

  • Lee, O-Mi;Oh, Jong-Hyeok;Hwang, Doo-Seong;Choi, Yun-Dong;Chung, Un-Soo;Park, Jin-Ho;Kim, Min-Ju;Jeong, Seong-Yun;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1219-1223
    • /
    • 2007
  • The removal of nitrogen compounds from a wastewater is essential and it is often accomplished by bio-logical process. An aerobic nitrate-removing bacterium was isolated from a municipal sewage treatment plant and soil. On the basis of its morphological, cultural and physiological characteristics and 16S rRNA sequencing data, this strain was identified as Pseudomonas fluorescens, and named as P. fluorescens K4. The optimal conditions of the initial pH and temperature of media for its growth were $7.0{\sim}8.0$ and $30^{\circ}C$, respectively. P. fluorescens K4 was able to remove 99.9% of nitrate after 24 h in a culture. The strain could grow with a nitrate concentration up to 800 mg/l and was able to remove 99.9% of nitrate after 104 h of incubation. The optimal electron donor was sodium citrate for a nitrate removal. The strain K4 showed a capability of a complete nitrate removal when the initial C/N ratio was 1.0. An effect of the initial seed concentration was observed for a cell of 10% (v/v) for a nitrate removal. Especially P. fluorescens K4 could completely remove 200 mg/l ammonium for 3 days.

Dissolution of Antheraea pernyi Silk Fiber and Structure of Regenerated Fibroin from Zinc Nitrate Solution (질산아연에 의한 작잠견피브로인의 용해와 특성)

  • 권해용;이광길;여주홍;박영환
    • Journal of Sericultural and Entomological Science
    • /
    • v.45 no.2
    • /
    • pp.121-125
    • /
    • 2003
  • Dissolution of Antheraea pernyi silk fiber was carried out in a zinc nitrate 6 hydrate (Zn(NO$_3$)$_2$ㆍ6$H_2O$) solution with various dissolving conditions. The solubility was significantly dependent on the concentration of zinc nitrate, dissolving temperature and time. Regenerated A. pernyi silk fibroin powder was obtained through dialysis process to remove chaotropic salt. FTIR and X-ray diffractometer showed that the conformation of regenerated A. pernyi silk powder was sheet structure.

Study of Factors Influenced on denitrification in wastewater treatment (폐수처리 탈질 공정에 미치는 인자 연구)

  • Jeong, Gwi-Taek;Park, Seok-Hwan;Park, Jae-Hee;Bhang, Sung-Hun;Lim, Eun-Tae;Park, Don-Hee
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.535-540
    • /
    • 2008
  • In this study, the effects of several factors such as initial nitrate concentration, C/N ratio, biomass amount and external carbon source on denitrification process were investigated using synthetic wastewater and sludge obtained from wastewater treatment facility. As a result, the condition of lower initial nitrate concentration was increased to the removal rate of nitrate than that of high concentration. The increases of C/N ratio and initial biomass amount were linearly enhanced the removal rate. The use of ethanol as external carbon source was shown the highest removal yield than that of others.

Effect of Farming Practices on Water Quality

  • 최중배;최예환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.E
    • /
    • pp.63-71
    • /
    • 1995
  • Three types of land use were investigated to describe the effect of land use on both surface and ground water quality. Typical land uses of a grazing pasture, Sudan grass field and paddy in Kangwon province were selected and flumes and monitoring wells were installed. Land managements were carefully monitored, water samples were collected periodically and analyzed with respect to nitrate, TP and TKN at a laboratory of Kangwon Provincial Institute of Health and Environment from August, 1993 to May, 1994. Runoff from the pasture was formed mostly with seeping subsurface flow in the lower areas of the pasture. A few overland flows were observed during heavy storms, and when it occurred, runoff increased sharply. For the Sudan grass field, runoff was formed with overland flow. Nitrate concentration in runoff from both land uses seemed not affected by runoff and ranged from 0.241 to 4.137mg'/1. TP and TKN concentrations from the pasture were affected by overland flow. When overland flow occurred, TP and TKN concentrations abruptly increased to 5.726 and 12.841mg/1, respectively, from less than 1.0mg/l. However, these concentrations from the Sudan grass field were quite stable ranging from 0.191 to 0.674mg/l for TP and 0A70 and 1.650mg/l for TKN. Nitrate concentration was significantly affected by land use(Sudan grass field) and the concentration increase reached about 2mg/l per lOOm ground water flow. Nitrate concentration from a well located in the middle of rice fields also was significantly higher than that measured from a well located relatively undisturbed mountain toe area. TP and TKN concentrations in shallow ground water affected by the depth of the monitoring wells. The deeper the monitoring wells, the less TP and TKN concentrations were measured.

  • PDF

Interpretation of Chemistry Analytical Data in Precipitation (강수중 화학성분 분석자료의 해석)

  • 강공언;전종남;김희강
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.4
    • /
    • pp.62-68
    • /
    • 1996
  • Precipitation samples were collected by the wet-only event sampling method at Seoul from September 1991 to April 1995. Concentrations of samples for the ion components($NO_3^-, NO_2^-, SO_4^{2-}, Cl^-, F^-, Na^+, K^+, Ca^{2+}, Mg^{2+}$ and $NH_4^+$) were measured in addition to pH and electric conductivity. During the sampling period, 182 samples were collected, but only 163 samples were identified as valid. The pH, calculated from the volume-weighted $H^+$ concentration, was found to be 4.7, indicating a relatively intensive acidity compared with data from other regions of the world, where acid deposition was known to be a problem. Above all, the concentration of non-seasalt sulfate was $84 \mu eq/L$, which was the highest compared to that measured in other regions of the world. The major acidifying ions in the precipitation at Seoul were identified as sulfate and nitrate except for chloride, because the Cl/Na ratio in the precipitation was close to the ratio in seawater. If all of the non-seasalt sulfate and nitrate existed in the form of sulfuric and nitric acids, respectively, the average pH in the precipitation was calculated as 3.7, lower than the measured value. Consequently, the difference between the calculated and measured pH suggest that the acidity of precipitation was neutralized by alkaline species, not due to the low contribution of an anthropogenic air pollutants to the precipitation. The equivalent concentration ratio of sulfate to nitrate was 3.5, which indicated that the contributions of sulfuric and nitric acids to the precipitation acidity were 78% and 22%, respectively.

  • PDF

Studies on the Nitarte Acumulation in Forages (사료작물의 질산태질소 축적에 관한 연구)

  • 허삼남
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.12 no.4
    • /
    • pp.239-245
    • /
    • 1992
  • Aspects of nitrate accumulation of forages growing on grasslands in Chonbuk Province, and the effects of different rates of N fertilizer on the total nitrogen and nitrate contents of sudangrass-hybrid and corn were studied through the 1991 growing season. The results obtained are summarized as follows: I . Thc nitrate content of the forages was increased by N application and decreased as the plants matured. 2. Nitrate concentration was high throughout the growing season in samples collected at Namweon-gun 1, which was considered as potentially unsafe. 3. Total nitrogen and nitrate content of plants generally increased with the increasing rates of N fertilizer, but not statistically significant among treatments except the plot of 25 kg N/lOa. 4. The annual crops had a greater tendency to accumulate nitrate than the perennial forage species. 5. It is suggested that high level of N fertilizer and manure may result in toxic levels of nitrate, and special attention must be given in feeding them.

  • PDF

Characteristics of Mediated Enzymatic Nitrate Reduction by Gallocyanine-Bound Nanoporous Electrode

  • Kim Seung-Hwan;Song Seung-Hoon;Yoo Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.505-510
    • /
    • 2006
  • A gallocyanine-bound nanoporous titanium dioxide electrode system was investigated to carry out a mediated enzyme reaction. Gallocyanine was bound either directly or through an aminopropylsilane linker to the film of nanoporous titanium dioxide and used as a mediator for nitrate reductase in the mediated enzymatic nitrate reduction. The electrode with the aminopropylsilane linker showed 20% higher efficiency of electron transfer at the same potential than that directly linked. The prepared electrodes showed $0.26{\mu}mol/h$ nitrate reduction at a $100mm^2$ surface of the electrode, and linear current response on nitrate ion concentration up to 1.0 mM, which is very useful as a biosensor of nitrate ion in water.

Evaluation of the Nitrate Anion in Recon Extract by Adsorbents

  • Han, Young-Rim;Sung, Yang-Joo;Park, Jin-Won;Kim, Yang-Ok;Rhee, Moan-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.29 no.2
    • /
    • pp.104-109
    • /
    • 2007
  • The amount of nitrate in the tobacco leaf has been shown to be correlated with the levels of alkaloids and nitrosamines. Also the nitrate content of the tobacco correlated closely with the smoke delivery of nitric oxide and tobacco-specific nitrosamines (TSNAs). These are related with the effect of the reconstituted tobacco leaf(Recon) using the tobacco stems. Adsorption process is gaining interest as one of the effective processes of advanced liquid treatment for liquid containing unnecessary materials. This study is focused on the evaluation of four anion exchangers, a cation exchanger and an activated carbon, as adsorbents for reduction of nitrate anion from Recon extract. In order to analyze the nitrate anion, the IC method used in this work was carried out with a Dionex ICS-2000 system. The effects of dosages of adsorbents and concentration of extract on the removal of nitrate anion were examined. Experimental results showed that for nitrate-anion exchanger, nitrate-cation exchanger and nitrate-activated carbon adsorption system, approximately 70 %, 10 %, and 4 % removal efficiencies were achieved at the Brix 10 and the 20 % addition. Although the activated carbon was little efficient for removal of nitrate ion, the removal of nicotine was very efficient at given conditions.

Use of Nitrate-nitrogen as a Sole Dietary Nitrogen Source to Inhibit Ruminal Methanogenesis and to Improve Microbial Nitrogen Synthesis In vitro

  • Guo, W.S.;Schaefer, D.M.;Guo, X.X.;Ren, L.P.;Meng, Qingxiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.542-549
    • /
    • 2009
  • An in vitro study was conducted to determine the effect of nitrate-nitrogen used as a sole dietary nitrogen source on ruminal fermentation characteristics and microbial nitrogen (MN) synthesis. Three treatment diets were formulated with different nitrogen sources to contain 13% CP and termed i) nitrate-N diet (NND), ii) urea-N diet (UND), used as negative control, and iii) tryptone-N diet (TND), used as positive control. The results of 24-h incubations showed that nitrate-N disappeared to background concentrations and was not detectable in microbial cells. The NND treatment decreased net $CH_4$ production, but also decreased net $CO_2$ production and increased net $H_2$ production. Total VFA concentration was lower (p<0.05) for NND than TND. Suppression of $CO_2$ production and total VFA concentration may be linked to increased concentration of $H_2$. The MN synthesis was greater (p<0.001) for NND than UND or TND (5.74 vs. 3.31 or 3.34 mg/40 ml, respectively). Nitrate addition diminished methane production as expected, but also increased MN synthesis.