• Title/Summary/Keyword: nitrate(${NO_3}^-$)

Search Result 1,066, Processing Time 0.034 seconds

Nitrate Removal Rate in Reed Wetland Cells of a Pond-Wetland Stream Water Treatment System (하천수정화 연못-습지 시스템의 갈대 습지셀 초기 질산성질소 제거)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.4
    • /
    • pp.274-278
    • /
    • 2002
  • Nitrate removal rate in three wetland cells was examined. The acreage of each cell was 150 $m^2$. They were a part of a stream water treatment demonstration system which was composed of two ponds and six wetland cells. Earth works far the pond-wetland system were finished from April 2000 to May 2000 and reeds were planted in the three cells in May 2001. Waters of Sinyang Stream flowing into Kohung Esturiane Lake located southern coastal area of Korean Peninsula were pumped into a primary pont Effluents from a secondary pond were funneled into the three cells. Volumes and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Inflow and outflow averaged 20 $m^3/d$ and 19.3 $m^3/d$, respectively. Hydraulic retention time was 1.5 days. Average influent and effluent nitrate concentration was 2.30 mg/L, 1.75 mg/L, respectively. Nitrate removal rate in the three cells averaged 80.9 $mg/m^2/day$. Seasonal changes of nitrate retention rates were closely related to those of wetland temperatures. Full growth of reeds within a few years can develope litter-soil substrates beneficial to the denitrification of nitrate, which may lead to increases of the nitrate retention rates.

An Automated Water Nitrate Monitoring System based on Ion-Selective Electrodes

  • Cho, Woo Jae;Kim, Dong-Wook;Jung, Dae Hyun;Cho, Sang Sun;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.41 no.2
    • /
    • pp.75-84
    • /
    • 2016
  • Purpose: In-situ water quality monitoring based on ion-selective electrodes (ISEs) is a promising technique because ISEs can be used directly in the medium to be tested, have a compact size, and are inexpensive. However, signal drift can be a major concern with on-line management systems because continuous immersion of the ISEs in water causes electrode degradation, affecting the stability, repeatability, and selectivity over time. In this study, a computer-based nitrate monitoring system including automatic electrode rinsing and calibration was developed to measure the nitrate concentration in water samples in real-time. Methods: The capabilities of two different types of poly(vinyl chloride) membrane-based ISEs, an electrode with a liquid filling and a carbon paste-based solid state electrode, were used in the monitoring system and evaluated on their sensitivities, selectivities, and durabilities. A feasibility test for the continuous detection of nitrate ions in water using the developed system was conducted using water samples obtained from various water sources. Results: Both prepared ISEs were capable of detecting low concentrations of nitrate in solution, i.e., 0.7 mg/L $NO_3-N$. Furthermore, the electrodes have the same order of selectivity for nitrate: $NO_3{^-}{\gg}HCO_3{^-}$ > $Cl^-$ > $H_2PO_4{^-}$ > $SO{_4}^{2-}$, and maintain their sensitivity by > 40 mV/decade over a period of 90 days. Conclusions: The use of an automated ISE-based nitrate measurement system that includes automatic electrode rinsing and two-point normalization proved to be feasible in measuring $NO_3-N$ in water samples obtained from different water sources. A one-to-one relationship between the levels of $NO_3-N$ measured with the ISEs and standard analytical instruments was obtained.

Quantitative Analysis of Nitrate and Nitrite in Rain, Milk and Infant Formula using Ion Chromatography (이온 크로마토그래피를 이용한 빗물과 분유, 우유중의 nitrite와 nitrate의 정량분석)

  • Kang, Mi-Jeong;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.583-586
    • /
    • 1999
  • The quantitative analysis of nitrate and nitrite in rain, milk and infant formula was done by Ion Chromatography. The nitrite was not detected(<0.1 mg/L) in all the samples. However, the nitrate was detected in the range of 0.1~4.9 mg/L in rain, 9.8~19.8 mg/L in milk, and 80~300 mg/L in infant formula, respectively. Some content of nitrate is close to the maximum contaminant level(MCL) which is 10 mg/L as $NO_3-N$, 44.3 mg/L as $NO_3$.

  • PDF

Nitrate Removal in a Packed Bed Reactor Using Volatile Fatty Acids from Anaerobic Acidogenesis of Food Wastes

  • Lim, Seong-Jin;Ahn, Yeong-Hee;Kim, Eun-Young;Chang, Ho-Nam
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.538-543
    • /
    • 2006
  • A packed bed reactor (PBR) was fed with nitrate containing synthetic wastewater or effluent from a sequencing batch reactor used for nitrification. The C source introduced into the PBR consisted of volatile fatty acids (VFAs) produced from anaerobic acidogenesis of food wastes. When nitrate loading rates ranged from $0.50\;to\;1.01\;kg\;N/m^{3}{\cdot}d$, the PBR exhibited $100{\sim}98.8%\;NO_{3}^{-}-N$ removal efficiencies and nitrite concentrations in the effluent ranged from $0\;to\;0.6\;NO_{2}^{-}-N\;mg/L$. When the PBR was further investigated to determine nitrate removal activity along the bed height using a nitrate loading rate less than $1.01\;kg\;N/m^{3}{\cdot}d$, 100% nitrate removal efficiency was observed. Approximately 83.2% nitrate removal efficiency was observed in the lower 50% of the packed-bed height. When reactor performance at a C/N ratio of 4 and a C/N ratio of 5 was compared, the PBR showed better removal efficiency (96.5%) of nitrate and less nitrite concentration in the effluent at the C/N ratio of 5. VFAs were found to be a good alternative to methanol as a carbon source for denitrification of a municipal wastewater containing 40 mg-N/L.

Oxidation of Dibenzyl Sulfide via an Oxygen Transfer from Palladium Nitrate

  • WhangPark, Young-ae;Na, Yong-Ho;Baek, Du-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.2023-2027
    • /
    • 2006
  • Dibenzyl sulfide was oxidized at the a-carbon to yield benzaldehyde in the presence of $Pd(NO_3)_2$. Oxygen itself could not oxidize the sulfide directly, instead the nitrato ligand of the palladium complex transferred oxygen to dibenzyl sulfide to form benzaldehyde. The X-ray crystal structure of the intermediate complex, cis-[$Pd(NO_3)_2${$S(CH_2C_6H_5)_2$}$_2$], revealed that the nitrato ligand was unidentate. Para-substituted dibenzyl sulfides I, $(YC_6H_4CH_2)_2S $wherein Y = $OCH_3$, $CH_3$, Cl, CN, or $NO_2$, were synthesized and reacted with palladium nitrate, and those with electron-donating substituents (Y = $OCH_3$ and $CH_3$) were good substrates for the oxidation reaction with palladium nitrate. Thus, the reaction mechanism of the oxygen transfer was proposed to include nucleophilic benzylic carbon.

The Removal of the Phosphorus by DNPAOs According to the Loading of the Influent NO3-N in Anoxic Zone (무산소조 NO3-N 농도 변화에 따른 DNPAOs에 의한 인 제거)

  • Kim, Hong-Tae;Kim, Kyeong-Ho
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1271-1277
    • /
    • 2007
  • This study was conducted to investigate the ratios of phosphorus release to COD uptake, phosphorus release to nitrate removal, and phosphorus uptake to phosphorus release by DNPAOs(denitrifying phosphate accumulating organisms). In case $I{\sim}IV$, influent 1 were fed with synthetic wastewater with influent 2 $NO_3^--N$ injection to anoxic zone and the case V were fed with municipal wastewater with side stream oxic zone instead of influent 2 $NO_3^--N$ injection. As a result, the ratio of phosphorus release to carbon uptake was increased in accordance with nitrate supply. The DNPAOs simultaneously took up phosphate and removed nitrate from the anoxic reactor. In case $I{\sim}IV$, with above 20 mg/L of sufficient $NO_3^--N$ supply, phosphate was taken up excessively by the DNPAOs in anoxic condition. The large amount of both uptake and release of phosphorus occurred above 20 mg/L of nitrate supply, achieving the ratio of phosphorus uptake to phosphorus release to be 1.05. In case V, phosphate luxury uptake was not occurred in system due to 6.98 mg/L of insufficient $NO_3^--N$ supply and the ratio of phosphorus uptake to phosphorus release was 0.98. Consequently, if nitrate as the electron acceptor was sufficient in anoxic zone, the ratio was found to be high.

Thermal Denitration of High Concentration Nitrate Salts Waste Water (열분해에 의한 고농도 질산염 폐액의 탈질)

  • ;;;;;C. Latge
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.665-670
    • /
    • 2003
  • This study investigated the thermodynamic and the thermal decomposition properties of high concentration nitrate salts waste water for the lagoon sludge treatment. The thermodynamic property was carried out by COACH and GEMINI II based on the composition of nitrate Salts waste water. The thermal decomposition property was carried out by TG-DTA and XRD. Ammonium nitrate and sodium nitrate were decomposed at $250^{\circ}C$$730^{\circ}C$$450^{\circ}C$$Na_2O$ into stable $Na_2O$.$Al_2O_3$. The flow sheet for nitrate salts waste water treatment was proposed based on the these properties data. These will be used by the basic data of the process simulation.

  • PDF

Removal of Nitrate-Nitrogen in Pickling Acid Wastewater from Stainless Steel Industry Using Electrodialysis and Ion Exchange Resin (전기투석과 이온교환수지를 이용한 스테인레스 산업의 산세폐수 내 질산성 질소의 제거)

  • Yun, Young-Ki;Park, Yeon-Jin;Oh, Sang-Hwa;Shin, Won-Sik;Choi, Sang-June;Ryu, Seung-Ki
    • Journal of Environmental Science International
    • /
    • v.18 no.6
    • /
    • pp.645-654
    • /
    • 2009
  • Lab-scale Electrodialysis(ED) system with different membranes combined with before or after pyroma process were carried out to remove nitrate from two pickling acid wastewater containing high concentrations of $NO_3\;^-$(${\approx}$150,000 mg/L) and F($({\approx}$ 160,000 mg/L) and some heavy metals(Fe, Ti, and Cr). The ED system before Pyroma process(Sample A) was not successful in $NO_3\;^-$ removal due to cation membrane fouling by the heavy metals, whereas, in the ED system after Pyroma process(Sample B), about 98% of nitrate was removed because of relatively low $NO_3\;^-$ concentration (about 30,000 mg/L) and no heavy metals. Mono-selective membranes(CIMS/ACS) in ED system have no selectivity for nitrate compared to divalent-selective membranes(CMX/AMX). The operation time for nitrate removal time decreased with increasing the applied voltage from 10V to 15V with no difference in the nitrate removal rate between both voltages. Nitrate adsorption of a strong-base anion exchange resin of $Cl\;^-$ type was also conducted. The Freundlich model($R^2$ > 0.996) was fitted better than Langmuir mode($R^2$ > 0.984) to the adsorption data. The maximum adsorption capacity ($Q^0$) was 492 mg/g for Sample A and 111 mg/g for Sample B due to the difference in initial nitrate concentrations between the two wastewater samples. In the regeneration of ion exchange resins, the nitrate removal rate in the pickling acid wastewater decreased as the adsorption step was repeated because certain amount of adsorbed $NO_3\;^-$ remained in the resins in spite of several desorption steps for regeneration. In conclusion, the optimum system configuration to treat pickling acid wastewater from stainless-steel industry is the multi-processes of the Pyroma-Electrodialysis-Ion exchange.

Temporal Changes in N Assimilation and Metabolite Composition of Nitrate-Affected Tomato Plants

  • Sung, Jwakyung;Lee, Suyeon;Lee, Yejin;Kim, Rogyoung;Lee, Juyoung;Lee, Jongsik;Ok, Yongsik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.910-919
    • /
    • 2012
  • The role of inorganic nitrogen assimilation in the production of amino acids, organic acids and soluble sugars is one of the most important biochemical processes in plants, and, in order to achieve normally, nitrate uptake and assimilation is essential. For this reason, the characterization of nitrate assimilation and metabolite composition from leaves, roots and xylem sap of tomato (Solanum lycopersicum) was investigated under different nitrate levels in media. Tomato plants were grown hydroponically in liquid culture under five different nitrate regimes: deficient (0.25 and 0.75 mM $NO_3{^-}$), normal (2.5 mM $NO_3{^-}$) and excessive (5.0 and 10.0 mM $NO_3{^-}$). All samples, leaves, roots and xylem sap, were collected after 7 and 14 days after treatment. The levels of amino acids, soluble sugars and organic acids were significantly decreased by N-deficiency whereas, interestingly, they remained higher in xylem sap as compared with N-normal and -surplus. The N-excessive condition did not exert any significant changes in metabolites composition, and thus their levels were similar with N-normal. The gene expression and enzyme activity of nitrate reductase (NR), nitrite reductase (NIR) and glutamine synthetase (GS) were greatly influenced by nitrate. The data presented here suggest that metabolites, as a signal messenger, existed in xylem sap seem to play a crucial role to acquire nitrate, and, in addition, an increase in ${\alpha}$-ketoglutarate pathway-derived amino acids under N-deficiency may help to better understand plant C/N metabolism.

Nitrate uptake of the red tide dinoflagellate Prorocentrum micans measured using a nutrient repletion method: effect of light intensity

  • Lee, Kyung Ha;Jeong, Hae Jin;Kim, Hye Jeong;Lim, An Suk
    • ALGAE
    • /
    • v.32 no.2
    • /
    • pp.139-153
    • /
    • 2017
  • The ability of a red tide species to take up nutrients is a critical factor affecting its red tide dynamics and species competition. Nutrient uptake by red tide species has been conventionally measured by incubating nutrient-depleted cells for a short period at 1 or 2 light intensities. This method may be applicable to certain conditions under which cells remain in oligotrophic water for a long time and high nutrients are suddenly introduced. Thus, a new method should be developed that can be applicable to the conditions under which cells are maintained in eutrophicated waters in healthy conditions and experience light and dark cycles and different light intensities during vertical migration. In this study, a new repletion method reflecting these conditions was developed. The nitrate uptake rates of the red tide dinoflagellate Prorocentrum micans originally maintained in nitrate repletion and depletion conditions as a function of nitrate concentration were measured. With increasing light intensity from 10 to $100{\mu}E\;m^{-2}s^{-1}$, the maximum nitrate uptake rate ($V_{max}$) of P. micans increased from 3.6 to $10.8 pM\;cell^{-1}d^{-1}$ and the half saturation constant ($K_{s-NO3}$) increased from 4.1 to $6.9{\mu}M$. At $20{\mu}E\;m^{-2}s^{-1}$, the $V_{max}$ and $K_{s-NO3}$ of P. micans originally maintained in a nitrate repletion condition were similar to those maintained in a nitrate depletion condition. Thus, differences in cells under nutrient repletion and depletion conditions may not affect $K_{s-NO3}$ and $V_{max}$. Moreover, different light intensities may cause differences in the nitrate uptake of migratory phototrophic dinoflagellates.