• Title/Summary/Keyword: nisin production

Search Result 14, Processing Time 0.028 seconds

Charaterization of Nisin Production and Resistance of Lactococcus lactis ssp. lactis $ML_8$ (Lactococcus lactis ssp. lactis $ML_8$의 Nisin 생산 및 저항 특성)

  • 김등양;이형주
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.6
    • /
    • pp.619-623
    • /
    • 1991
  • To investigate nisin production and resistance of Lactococcus lactis ssp. tactis ML (L. lactis $ML_8$, effects of medium, pH of culture broth, and cell growth on the nisin activity, and effect of nisin with or without $Ca^[2+}$ ion on the growth of L. lactzs were analyzed. In the bio-assay of nisin by the agar diffusion method, inhibition-zone diameter of Micrococcus Javus was propotional to the logarithm of nisin concentration ranged 0.5~20 unitlml (12.5~500 ng/mf). Nisin activity of the pasteurized culture filtrates of L. lactis MLs was high at pH 2!3 but was inactivated completely at pH over 6.0. Nisin production of the L. lactis $ML_8$ cultured on LTB broth increased at late logarithmic phase and reached 10.5 unitlml after 16 hr. The cell growth of L. lactis LM 0230, a plasmid free and nisin sensitive strain, was inhibited on agar medium containing 7 unitlrnl of nisin, while L. lactis $ML_8$ showed high survival ability at 20 unitld of nisin. When 40 mM $Ca^[2+}$ ion was added to Elliker broth with 8 unitlml of nisin, the growth pattern of L. lactis $ML_8$ was similiar to that on control medium which did not contain nisin and $Ca^[2+}$ ion, and this suggested that $Ca^[2+}$ increased the nisin resistance of the L. lactis.

  • PDF

Process Kinetics of Nisin Production in Batch and Continuous Culture (회분식 및 연속식 배양시 Nisin의 생산특성)

  • Yoo, Jin-Young;Park, Shin-Yang;Jin, Young-Ok;Koo, Young-Jo;Chung, Kun-Sub
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.5
    • /
    • pp.504-509
    • /
    • 1989
  • Fermentation condition of Streptococcus lactis IFO 12007 for nisin production was examined. The optimal glucose concentration was 60g/ι. The pH and temperature optimum were 6.5 and 31$^{\circ}C$, respectively. The maximum nisin activity in batch culture was 2000IU/$m\ell$. The fermentation quotients after 7 hours of fermentation in batch culture were; specific glucose uptake rate:0.59g/g/h , specific nisin productivity: 34924IU/g/h, product yield: 5944IU/g, growth yield:0.24, biomass:4.81g/ι. The specific growth rate was affected by pH and temperature and the activation energy for growth was 1.35kcal/mole. pH control was essential for nisin production. Fed-batch culture using 20g/$\ell$ glucose medium produced 1420IU/$m\ell$ after 14 hours. The continuous culture could be operated at below 0.38h$^{-1}$ for nisin production. The steady state nisin concentration and specific nisin productivity were 740IU/$m\ell$ and 45000IU/g/h. The growth yield and maintenance energy were 0.144 and 207mg glucose/g-cell/h.

  • PDF

탁주 발효에 대한 Nisin의 이용

  • Yoo, Jin-Young;Lee, Sung
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.203-206
    • /
    • 1997
  • Takju is a traditional alcoholic beverage that has been prepared by fermenting the cooked rice and Nuruk (Korean-style bran koji). During fermentation. bacterial contamination is a problem which inhibits the growth of yeast and thus lowers the ethanol production from starch of rice, and causes souring. Major contaminants were known to be gram-positive acid producers at the early stage of fermentation. This problem would be solved if the contaminated bacteria could be controlled. Nisin, a GRAS-grade preservative, was added at the level of 500 iu/g as it retards the growth of the gram-positive bacteria. It was possible to control acid and ethanol production during fermentation. This process increased the ethanol production by 2 % comparing with control.

  • PDF

Applicability of Nisin and Tumbling to Improve the Microbiological Quality of Marinated Chicken Drumsticks

  • Tan, F.J.;Ockerman, H.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.2
    • /
    • pp.292-296
    • /
    • 2006
  • Meat marination has been applied to improve product's physical and sensory attributes for years, but usually it is not intended to improve microbial quality of the product. Tumbling, which helps the distribution of marinade solution during processing, should enhance the action of antimicrobial agents. The objective of this study is to evaluate the combined effects of nisin, tumbling and storage time on total microflora and psychrotrophs counts on poultry. A marinade that contained acetic acid (1%) and salt (3%) with pH adjusted to 4 was developed as a standardized marinade. Drumsticks were marinated with various nisin levels (0, 50, or 100 IU/ml) combined with tumbling (0, 10, or 20 min), and then stored at $4^{\circ}C$ for 18 h. The total microflora and psychrotrophs counts of the samples were evaluated after 0, 2, 4, and 7 days of storage. The results indicated that at a given storage time, the samples tumbled for either 10 or 20 min had significantly (p<0.05) lower microbial counts when compared with the samples without the tumbling treatment. The microbial counts of the tumbled samples increased as storage time increased. Microbial counts significantly (p<0.05) decreased when more nisin was increased up to the level of 100 IU/ml. In conclusion, adding of nisin at the level of 50 IU/ml with tumbling for 10 min decreased the total microflora and psychrotrophs counts of the marinated chicken broiler drumsticks.

The Effect of Carbon Sources on Nisin Z Biosynthesis in Lactococcus lactis subsp. lactis A164

  • CHEIGH CHAN-ICK;LEE SANG-JAE;PYUN YU-RYANG;AN DUEK-JUN;HWANG YOUNG-SUP;CHUNG YOOJIN;PARK HOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1152-1157
    • /
    • 2005
  • The effect of carbon sources on nisin Z biosynthesis in Lactococcus lactis subsp. lactis A164 was studied in batch culture using M17 broth containing different carbon sources. Among the eleven carbon sources tested, glucose, sucrose, and lactose were suitable carbon sources for cell growth of L. lactis A164. In particular, cells grown on lactose produced at least 3-fold greater amount of nisin Z than those on other carbon sources. Galactose resulted in less amount of cell mass than did sucrose or glucose, but gave a higher level of nisin Z activity. Northern blot analysis revealed. that lactose increased the transcription of the nisZ pre-peptide gene. Although galactose was less efficient than lactose, it increased the transcription of nisZ along with a higher level of nisin Z than did sucrose and glucose. These results suggest that the increased nisin Z production is correlated with the induction of nisZ by lactose and galactose. Among all the carbon sources tested, no remarkable differences were observed in nisRK and nisFEG transcripts, indicating that the lactose- or galactose-mediated induction is unique to the nisZ promoter.

Preparation of Low Salt Doenjang Using by Nisin-Producing Lactic Acid Bacteria (Nisin생성 유산균을 이용한 저염 된장의 제조)

  • 이정옥;류충호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.1
    • /
    • pp.75-80
    • /
    • 2002
  • The growth inhibition by nisin-Producing lactococci against Bacillus subtilis and its application to doenjang fermentation were investigated. Lactococcus lactis subsp. lactis IFO 12007, L. lactis subsp. lactis ATCC 7962 and L. lactis subsp. lactis ATCC 11454 were used as nisin-producing lactococci. All of three strain rapidly proliferated to more than 10$^{9}$ CFU/g in steamed soybeans. Only L. lactis subsp. lactis IFO 12007 was in steamed soybean without any pH decrease. In spite of the mild decrease in pH, the growth of B. subtilis was completely inhibited; no living cells were detected in a soybean sample inoculated with 10$^{6}$ CFU/g and incubated for 24 to 72h. The L. lactis subsp. lactis IFO 12007 was applied to doenjang fermentation as a starter culture. It produced high nisin activity in steamed soybean, resulting in the complete growth inhibition of B. subtilis, which had been inoculated at the beginning of the meju fermentation, throughout the process of doenjang production. Over-acidification, which is undesirable for doenjang quality, was successfully prevented simply by adding salt which killed the salt-intolerant L. lactis subsp. lactis IFO 12007. Furthermore, the nisin activity in doenjang disappeared with aging.

Construction and Analysis of Food-Grade Lactobacillus kefiranofaciens β-Galactosidase Overexpression System

  • He, Xi;Luan, MingJian;Han, Ning;Wang, Ting;Zhao, Xiangzhong;Yao, Yanyan
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.550-558
    • /
    • 2021
  • Lactobacillus kefiranofaciens contains two types of β-galactosidase, LacLM and LacZ, belonging to different glycoside hydrolase families. The difference in function between them has been unclear so far for practical application. In this study, LacLM and LacZ from L. kefiranofaciens ATCC51647 were cloned into constitutive lactobacillal expression vector pMG36e, respectively. Furtherly, pMG36n-lacs was constructed from pMG36e-lacs by replacing erythromycin with nisin as selective marker for food-grade expressing systems in Lactobacillus plantarum WCFS1, designated recombinant LacLM and LacZ respectively. The results from hydrolysis of o-nitrophenyl-β-galactopyranoside (ONPG) showed that the β-galactosidases activity of the recombinant LacLM and LacZ was 1460% and 670% higher than that of the original L. kefiranofaciens. Moreover, the lactose hydrolytic activity of recombinant LacLM was higher than that of LacZ in milk. Nevertheless, compare to LacZ, in 25% lactose solution the galacto-oligosaccharides (GOS) production of recombinant LacLM was lower. Therefore, two β-galactopyranosides could play different roles in carbohydrate metabolism of L. kefiranofaciens. In addition, the maximal growth rate of two recombinant strains were evaluated with different temperature level and nisin concentration in fermentation assay for practical purpose. The results displayed that 37℃ and 20-40 U/ml nisin were the optimal fermentation conditions for the growth of recombinant β-galactosidase strains. Altogether the food-grade Expression system of recombinant β-galactosidase was feasible for applications in the food and dairy industry.

Effects of Protease-resistant Antimicrobial Substances Produced by Lactic Acid Bacteria on Rumen Methanogenesis

  • Reina, Asa;Tanaka, A.;Uehara, A.;Shinzato, I.;Toride, Y.;Usui, N.;Hirakawa, K.;Takahashi, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.6
    • /
    • pp.700-707
    • /
    • 2010
  • Effects of protease-resistant antimicrobial substances (PRA) produced by Lactobacillus plantarum and Leuconostoc citreum on rumen methanogenesis were examined using the in vitro continuous methane quantification system. Four different strains of lactic acid bacteria, i) Lactococcus lactis ATCC19435 (Control, non-antibacterial substances), ii) Lactococcus lactis NCIMB702054 (Nisin-Z), iii) Lactobacillus plantarum TUA1490L (PRA-1), and iv) Leuconostoc citreum JCM9698 (PRA-2) were individually cultured in GYEKP medium. An 80 ml aliquot of each supernatant was inoculated into phosphate-buffered rumen fluid. PRA-1 remarkably decreased cumulative methane production, though propionate, butyrate and ammonia N decreased. For PRA-2, there were no effects on $CH_4$ and $CO_2$ production and fermentation characteristics in mixed rumen cultures. The results suggested that PRA-1 reduced the number of methanogens or inhibited utilization of hydrogen in rumen fermentation.

Trends in Development and Research of Natural Food Additives (천연 식품 첨가물 개발 및 연구동향)

  • 이형주
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 1994.06a
    • /
    • pp.17-22
    • /
    • 1994
  • Food additives are minor components which are used to enhance nutritive or sensory values, and to improve shelf life of foods. In foods, natural additives are preferred over artificial or synthetic materials because of concern on food safety. Many biotechnological techniques have been applied to the production of food additives since the biotechnology has been utilized to prodyce many flavor components such as glutamate, 5'-nucleotides, esters, 2,3-bytadione, pyrazines, terpenes, and lactones. Natural flavors, fragrances, sweetners, and colorants can be produced by plant cell culture. Many lactic acid bacteria produce bacteriocins such as nisin or diplococcin. These bacteriocins are used as safe preservatives in foods and many researches on the improvenment of bacteriocin productivity by genetic engineering are in progress.

  • PDF

Mitigation of Methane Emission and Energy Recycling in Animal Agricultural Systems

  • Takahashi, J.;Mwenya, B.;Santoso, B.;Sar, C.;Umetsu, K.;Kishimoto, T.;Nishizaki, K.;Kimura, K.;Hamamoto, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1199-1208
    • /
    • 2005
  • Abatement of greenhouse gas emitted from ruminants and promotion of biogas energy from animal effluent were comprehensively examined in each anaerobic fermentation reactor and animal experiments. Moreover, the energy conversion efficiency of biomass energy to power generation were evaluated with a gas engine generator or proton exchange membrane fuel cell (PEMFC). To mitigate safely rumen methanogenesis with nutritional manipulation the suppressing effects of some strains of lactic acid bacteria and yeast, bacteriocin, $\beta$1-4 galactooligosaccharide, plant extracts (Yucca schidigera and Quillaja saponarea), L-cysteine and/or nitrate on rumen methane emission were compared with antibiotics. For in vitro trials, cumulative methane production was evaluated using the continuous fermented gas qualification system inoculated with the strained rumen fluid from rumen fistulated Holstein cows. For in vivo, four sequential ventilated head cages equipped with a fully automated gas analyzing system were used to examine the manipulating effects of $\beta$1-4 galactooligosaccharide, lactic acid bacteria (Leuconostoc mesenteroides subsp. mesenteroides), yeast (Trichosporon serticeum), nisin and Yucca schidigera and/or nitrate on rumen methanogenesis. Furthermore, biogas energy recycled from animal effluent was evaluated with anaerobic bioreactors. Utilization of recycled energy as fuel for a co-generator and fuel cell was tested in the thermophilic biogas plant system. From the results of in vitro and in vivo trials, nitrate was shown to be a strong methane suppressor, although nitrate per se is hazardous. L-cysteine could remove this risk. $\beta$1-4 galactooligosaccharide, Candida kefyr, nisin, Yucca schidigera and Quillaja saponarea are thought to possibly control methanogenesis in the rumen. It is possible to simulate the available energy recycled through animal effluent from feed energy resources by making total energy balance sheets of the process from feed energy to recycled energy.