• Title/Summary/Keyword: nil subset

Search Result 4, Processing Time 0.016 seconds

NIL SUBSETS IN BCH-ALGEBRAS

  • Jun, Young-Bae;Roh, Eun-Hwan
    • East Asian mathematical journal
    • /
    • v.22 no.2
    • /
    • pp.207-213
    • /
    • 2006
  • Using the notion of nilpotent elements, the concept of nil subsets is introduced, and related properties are investigated. We show that a nil subset on a subalgebra (resp. (closed) ideal) is a subalgebra (resp. (closed) ideal). We also prove that in a nil algebra every ideal is a subalgebra.

  • PDF

SPECIAL WEAK PROPERTIES OF GENERALIZED POWER SERIES RINGS

  • Ouyang, Lunqun
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.687-701
    • /
    • 2012
  • Let $R$ be a ring and $nil(R)$ the set of all nilpotent elements of $R$. For a subset $X$ of a ring $R$, we define $N_R(X)=\{a{\in}R{\mid}xa{\in}nil(R)$ for all $x{\in}X$}, which is called a weak annihilator of $X$ in $R$. $A$ ring $R$ is called weak zip provided that for any subset $X$ of $R$, if $N_R(Y){\subseteq}nil(R)$, then there exists a finite subset $Y{\subseteq}X$ such that $N_R(Y){\subseteq}nil(R)$, and a ring $R$ is called weak symmetric if $abc{\in}nil(R){\Rightarrow}acb{\in}nil(R)$ for all a, b, $c{\in}R$. It is shown that a generalized power series ring $[[R^{S,{\leq}}]]$ is weak zip (resp. weak symmetric) if and only if $R$ is weak zip (resp. weak symmetric) under some additional conditions. Also we describe all weak associated primes of the generalized power series ring $[[R^{S,{\leq}}]]$ in terms of all weak associated primes of $R$ in a very straightforward way.

A note on k-nil radicals in BCI-algebras

  • Hong, Sung-Min;Xiaolong Xin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.205-209
    • /
    • 1997
  • Hong et al. [2] and Jun et al. [4] introduced the notion of k-nil radical in a BCI-algebra, and investigated its some properties. In this paper, we discuss the further properties on the k-nil radical. Let A be a subset of a BCI-algebra X. We show that the k-nil radical of A is the union of branches. We prove that if A is an ideal then the k-nil radical [A;k] is a p-ideal of X, and that if A is a subalgebra, then the k-nil radical [A;k] is a closed p-ideal, and hence a strong ideal of X.

  • PDF

ON S-EXCHANGE RINGS

  • Liu, Dajun;Wei, Jiaqun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.945-956
    • /
    • 2020
  • We introduce the concept of S-exchange rings to unify various subclass of exchange rings, where S is a subset of the ring. Many properties on S-exchange rings are obtained. For instance, we show that a ring R is clean if and only if R is left U(R)-exchange, a ring R is nil clean if and only if R is left (N(R) - 1)-exchange, and that a ring R is J-clean if and only if R is left (J(R) - 1)-exchange. As a conclusion, we obtain a sufficient condition such that clean (nil clean property, respectively) can pass to corners and reprove that J-clean passes to corners by a different way.