• Title/Summary/Keyword: nil clean

Search Result 14, Processing Time 0.018 seconds

CLEANNESS OF SKEW GENERALIZED POWER SERIES RINGS

  • Paykan, Kamal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1511-1528
    • /
    • 2020
  • A skew generalized power series ring R[[S, 𝜔]] consists of all functions from a strictly ordered monoid S to a ring R whose support contains neither infinite descending chains nor infinite antichains, with pointwise addition, and with multiplication given by convolution twisted by an action 𝜔 of the monoid S on the ring R. Special cases of the skew generalized power series ring construction are skew polynomial rings, skew Laurent polynomial rings, skew power series rings, skew Laurent series rings, skew monoid rings, skew group rings, skew Mal'cev-Neumann series rings, the "untwisted" versions of all of these, and generalized power series rings. In this paper we obtain some necessary conditions on R, S and 𝜔 such that the skew generalized power series ring R[[S, 𝜔]] is (uniquely) clean. As particular cases of our general results we obtain new theorems on skew Mal'cev-Neumann series rings, skew Laurent series rings, and generalized power series rings.

ON SOME TYPE ELEMENTS OF ZERO-SYMMETRIC NEAR-RING OF POLYNOMIALS

  • Hashemi, Ebrahim;Shokuhifar, Fatemeh
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.183-195
    • /
    • 2019
  • Let R be a commutative ring with unity. In this paper, we characterize the unit elements, the regular elements, the ${\pi}$-regular elements and the clean elements of zero-symmetric near-ring of polynomials $R_0[x]$, when $nil(R)^2=0$. Moreover, it is shown that the set of ${\pi}$-regular elements of $R_0[x]$ forms a semigroup. These results are somewhat surprising since, in contrast to the polynomial ring case, the near-ring of polynomials has substitution for its "multiplication" operation.

Optimizing the Plasma Deposition Process Parameters of Antistiction Layers Using a DOE (Design of Experiment) (실험 계획법을 이용한 점착방지막용 플라즈마 증착 공정변수의 최적화 연구)

  • Cha Nam-Goo;Park Chang-Hwa;Cho Min-Soo;Park Jin-Goo;Jeong Jun-Ho;Lee Eung-Sug
    • Korean Journal of Materials Research
    • /
    • v.15 no.11
    • /
    • pp.705-710
    • /
    • 2005
  • NIL (nanoimprint lithography) technique has demonstrated a high potential for wafer size definition of nanometer as well as micrometer size patterns. During the replication process by NIL, the stiction between the stamp and the polymer is one of major problems. This stiction problem is moi·e important in small sized patterns. An antistiction layer prevents this stiction ana insures a clean demolding process. In this paper, we were using a TCP (transfer coupled plasma) equipment and $C_4F_8$ as a precursor to make a Teflon-like antistiction layer. This antistiction layer was deposited on a 6 inch silicon wafer to have nanometer scale thicknesses. The thickness of deposited antistiction layer was measured by ellipsometry. To optimize the process factor such as table height (TH), substrate temperature (ST), working pressure (WP) and plasma power (PP), we were using a design of experimental (DOE) method. The table of full factorial arrays was set by the 4 factors and 2 levels. Using this table, experiments were organized to achieve 2 responses such as deposition rate and non-uniformity. It was investigated that the main effects and interaction effects between parameters. Deposition rate was in proportion to table height, working pressure and plasma power. Non-uniformity was in proportion to substrate temperature and working pressure. Using a response optimization, we were able to get the optimized deposition condition at desired deposition rate and an experimental deposition rate showed similar results.

The Surface Treatment Effect for Nanoimprint Lithography using Vapor Deposition of Silane Coupling Agent (나노임프린트 공정에서 실란커플링제 기상증착을 이용한 표면처리 효과)

  • Lee, Dong-Il;kim, Ki-Don;Jeong, Jun-Ho;Lee, Eung-Sug;Choi, Dae-Geun
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.149-154
    • /
    • 2007
  • Nanoimprint lithography (NIL) is useful technique because of its low cost and high throughput capability for the fabrication of sub-micrometer patterns which has potential applications in micro-optics, magnetic memory devices, bio sensors, and photonic crystals. Usually, a chemical surface treatment of the stamp is needed to ensure a clean release after imprinting and to protect the expensive original master against contamination. Meanwhile, adhesion promoter between resin and substrate is also important in the nanoscale pattern. In this work, we have investigated the effect of surface treatment using silane coupling agent as release layer and adhesion promoter for UV-Nanoimprint lithography. Uniform SAM (self-assembled monolayer) could be fabricated by vapor deposition method. Vapor phase process eliminates the use of organic solvents and greatly simplifies the handling of the sample. It was also proven that 3-acryloxypropyl methyl dichlorosilane (APMDS) could strongly improve the adhesion force between resin and substrate compared with common planarization layer such as DUV-30J or oxygen plasma treatment.