• 제목/요약/키워드: nicotinic acetylcholine receptor

검색결과 55건 처리시간 0.023초

Anti-stress effects of ginseng via down-regulation of tyrosine hydroxylase (TH) and dopamine ${\beta}$-hydroxylase (DBH) gene expression in immobilization-stressed rats and PC12 cells

  • Kim, Yang-Ha;Choi, Eun-Ha;Doo, Mi-Ae;Kim, Joo-Yeon;Kim, Chul-Jin;Kim, Chong-Tai;Kim, In-Hwan
    • Nutrition Research and Practice
    • /
    • 제4권4호
    • /
    • pp.270-275
    • /
    • 2010
  • Catecholamines are among the first molecules that displayed a kind of response to prolonged or repeated stress. It is well established that long-term stress leads to the induction of catecholamine biosynthetic enzymes such as tyrosine hydroxylase (TH) and dopamine ${\beta}$-hydroxylase (DBH) in adrenal medulla. The aim of the present study was to evaluate the effects of ginseng on TH and DBH mRNA expression. Repeated (2 h daily, 14 days) immobilization stress resulted in a significant increase of TH and DBH mRNA levels in rat adrenal medulla. However, ginseng treatment reversed the stress-induced increase of TH and DBH mRNA expression in the immobilization-stressed rats. Nicotine as a ligand of the nicotinic acetylcholine receptor (nAChR) in adrenal medulla stimulates catecholamine secretion and activates TH and DBH gene expression. Nicotine treatment increased mRNA levels of TH and DBH by 3.3- and 3.1-fold in PC12 cells. The ginseng total saponin exhibited a significant reversal in the nicotine-induced increase of TH and DBH mRNA expression, decreasing the mRNA levels of TH and DBH by 57.2% and 48.9%, respectively in PC12 cells. In conclusion, immobilization stress induced catecholamine biosynthetic enzymes gene expression, while ginseng appeared to restore homeostasis via suppression of TH and DBH gene expression. In part, the regulatory activity in the TH and DBH gene expression of ginseng may account for the anti-stress action produced by ginseng.

생쥐 난자의 체외 성숙에 미치는 Nicotine의 영향 (The Effects of Nicotine on the Mouse Oocyte Maturation In vitro)

  • 성기청;배인하
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제28권1호
    • /
    • pp.1-12
    • /
    • 2001
  • Objective: The present study was done to clarify the effects of nicotine and nicotine tartrate on the mouse oocyte maturation in vitro. Methods: GV (germinal vesicle) oocytes were isolated from Graafian follicle of ovaries with sharp needles under a stereomicroscope from female mouse of ICR strain (4 weeks old). Collected oocytes were cultured for 17 hours at $37^{\circ}C$, 5% $CO_2$ in air and 100% humidified condition in incubator. New MHBS was the basic medium used in which nicotine, nicotine tartrate, and mecamylamine (antagonist of nicotinic acetylcholine receptor) were added depending on the experimental group. GV oocytes were cultured in one of these media. Results: Nicotine ($300{\mu}M{\sim}5mM$) had no effects on GVBD (germinal vesicle breakdown) compared to the control, but increasing concentration of nicotine led to an decrease in the first polar body formation. However, nicotine ($10{\sim}500{\mu}M$) induced GVBD in a dose-dependent manner of GV oocytes in a medium containing dbcAMP. Nicotine tartrate ($50{\mu}M{\sim}5mM$) had no effects on GVBD compared to the control but, increasing concentration of nicotine tartrate led to an decrease in the first polar body formation. Mecamylamine $10{\mu}M$ added to the medium containing nicotine ($300{\mu}M{\sim}5mM$) showed higher percentage of the first polar body formation compared to the nicotine ($300{\mu}M{\sim}5mM$) treatment group. Mecamylamine $10{\mu}M$ added to the medium containing nicotine tartrate ($50{\mu}M{\sim}5mM$) showed higher percentage of the first polar body formation compared to the nicotine tartrate ($50{\mu}M{\sim}5mM$) treatment group. Conclusion: The present study suggest that nicotine and nicotine tartrate have the harmful effects on the meiotic maturation of the mouse oocytes in vitro. However, mecamylamine block harmful effects of nicotine and nictine tartrate.

  • PDF

Pharmacological Effects of ginseng Saponins on Receptor Stimulation-responses

  • Eiichi Tachikawa;Kenzo Kudo;Kazuho Harada;Takeshi Kashimoto;KatsuroFurumachi;Yoshikazu Miyate;Atsushi Kakizaki;Eiji Takahashi
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1998년도 Advances in Ginseng Research - Proceedings of the 7th International Symposium on Ginseng -
    • /
    • pp.40-46
    • /
    • 1998
  • We investigated the influence of the root of Panax ginseng C. A. Meyer on the secretion of catecholamines from bovine adrenal chromaffin cells, which are used as a model of nervous systems. In two major parts extracted from the ginseng root, the crude saponin fraction, but not the non-saponin fraction, reduced the secretion from the cells, stimulated by acetylcholine (ACh). Ginseng saponins (ginsenosides) are classified into three groups, the panaxadiol, the panaxatriol and the oleanolic acid groups, on the basis of the chemical structures of their saponins. Both the panaxadiol and the panaxatriol saponins, excluding only one oleanolic acid saponin ginsenoside-Ro, generally reduced the ACh-evoked secretion. The inhibitory effects of the panaxatriol were much stronger than those of the panaxadiol. However, ginsenoside-Rg, and -Rh3 in the panaxadiol saponins were the potent inhibitors comparable to the panaxatriol saponins. Ginsenoside-Rg2 in the panaxatriol was the most effective. It is probable that the ginsenoside inhibition of the catecholamine secretion is due to the suppression of the function of the nicotinic ACh receptor-cation channels. On the other hand, ginsenoside-Rg2 did not affect the angiotensin II-, the bradykinin-, the histamine- and the neurotensin- induced catecholamine secretions from the chromaffin cells and the muscarine- and the histamine- induced contraction of the ileum in guinea-pigs. Ginsenoside-Rbl, a panaxadiol saponin, and ginsenoside-Ro had no or only a slight effect on them. On the contrary, ginsenoside-Rg3 not only competitively inhibited the muscarine-induced ileum contraction but also reduced the angiotensin R -, the bradykinin-, the histamine- and the neurotensin-induced catecholamine secretions. Thus, the ginseng root contains active ingredients, namely some ginsensides, which suppress the responses induced by receptor stimulation. The inhibitory effects of ginseng saponins may be one of the action mechanisms for the pharmacological effects of the Panax ginseng root.

  • PDF

Astragaloside IV Prevents Obesity-Associated Hypertension by Improving Pro-Inflammatory Reaction and Leptin Resistance

  • Jiang, Ping;Ma, Dufang;Wang, Xue;Wang, Yongcheng;Bi, Yuxin;Yang, Jinlong;Wang, Xuebing;Li, Xiao
    • Molecules and Cells
    • /
    • 제41권3호
    • /
    • pp.244-255
    • /
    • 2018
  • Low-grade pro-inflammatory state and leptin resistance are important underlying mechanisms that contribute to obesity-associated hypertension. We tested the hypothesis that Astragaloside IV (As IV), known to counteract obesity and hypertension, could prevent obesity-associated hypertension by inhibiting pro-inflammatory reaction and leptin resistance. High-fat diet (HFD) induced obese rats were randomly assigned to three groups: the HFD control group (HF con group), As IV group, and the As IV + ${\alpha}$-bungaratoxin (${\alpha}-BGT$) group (As IV+${\alpha}-BGT$ group). As IV ($20mg{\cdot}Kg^{-1}{\cdot}d^{-1}$) was administrated to rats for 6 weeks via daily oral gavage. Body weight and blood pressure were continuously measured, and NE levels in the plasma and renal cortex was evaluated to reflect the sympathetic activity. The expressions of leptin receptor (LepRb) mRNA, phosphorylated signal transducer and activator of transcription-3 (p-STAT3), phosphorylated phosphatidylinositol 3-kinase (p-PI3K), suppressor of cytokine signaling 3 (SOCS3) mRNA, and protein-tyrosine phosphatase 1B (PTP1B) mRNA, pro-opiomelanocortin (POMC) mRNA and neuropeptide Y (NPY) mRNA were measured by Western blot or qRT-PCR to evaluate the hypothalamic leptin sensitivity. Additionally, we measured the protein or mRNA levels of ${\alpha}7nAChR$, inhibitor of nuclear factor ${\kappa}B$ kinase subunit ${\beta}/nuclear$ factor ${\kappa}B$ ($IKK{\beta}/NF-KB$) and pro-inflammatory cytokines ($IL-1{\beta}$ and $TNF-{\alpha}$) in hypothalamus and adipose tissue to reflect the anti-inflammatory effects of As IV through upregulating expression of ${\alpha}7nAChR$. We found that As IV prevented body weight gain and adipose accumulation, and also improved metabolic disorders in HFD rats. Furthermore, As IV decreased BP and HR, as well as NE levels in blood and renal tissue. In the hypothalamus, As IV alleviated leptin resistance as evidenced by the increased p-STAT3, LepRb mRNA and POMC mRNA, and decreased p-PI3K, SOCS3 mRNA, and PTP1B mRNA. The effects of As IV on leptin sensitivity were related in part to the up-regulated ${\alpha}7nAchR$ and suppressed $IKK{\beta}/NF-KB$ signaling and pro-inflammatory cytokines in the hypothalamus and adipose tissue, since co-administration of ${\alpha}7nAChR$ selective antagonist ${\alpha}-BGT$ could weaken the improved effect of As IV on central leptin resistance. Our study suggested that As IV could efficiently prevent obesityassociated hypertension through inhibiting inflammatory reaction and improving leptin resistance; furthermore, these effects of As IV was partly related to the increased ${\alpha}7nAchR$ expression.

Inhibiyory Effects of Ginseng Saponins Metabolized in Degestive Tract on Adrenal Secretion of Catecholamines In vitro

  • Tachikawa Eiichi;Hasegawa Hideo;Kenzo Kudo;Kashimoto Takeshi;Miyate Yoshikazu;Kakizaki Atsushi;Takahashi Katsuo;Takahashi Eiji
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2002년도 학술대회지
    • /
    • pp.392-400
    • /
    • 2002
  • We have previously found that the saponins but not other components in the ginseng reduce the secretion of catecholamines (CAs) from bovine adrenal chromaffin cells, a model of sympathetic nerves, evoked by acetylcholine (ACh) due to the blockade of $Na^+$ influx through nicotinic ACh receptor-operated cation channels, and it has been concluded that the inhibitory effect may be associated with the anti-stress action of ginseng. However, the saponins, which showed the great reduction of the CA secretion, were mainly the protopanaxiatriols. The protopanaxadiol and oleanolic acid saponins had a little or little such effect. Recent studies demonstrated that the oligosaccharides connected to the hydroxyl groups of the aglycones of the saponins are in turn hydrolyzed by gastric acid and enzymes in the intestinal bacteria when the ginseng is orally administrated. In this study, the effects of their major 6 kinds of metabolites on the secretion of CAs were investigated. All metabolites (M1, 2, 3 and 5 derived from the protopanaxadiols, and M4 and 11 from the protopanaxiatriols) reduced the ACh-evoked secretion from the cells. In the metabolites, the M4 inhibition was the most potent ($IC_{50}({\mu}M):M4(9)$ < M2 (18) < M3 (19) < M1l (22) < M5 (36) < MI (38)). Although M4 also reduced the CA secretion induced by high $K^+$, a stimulation activating voltage-sensitive $Ca^{2+}$ channels, the inhibitory effect was much less than that on the ACh-evoked secretion. M4 inhibited the ACh-induced $Na^+$ influx into the cells in a concentration-dependent manner similar to that of the inhibition of the ACh-evoked secretion. When the cells were washed by the incubation buffer after the preincubation of the cells with M4 and then incubated without M4 in the presence of ACh, the M4 inhibition was not completely abolished. On the other hand, its inhibition was maintained even by increasing the external ACh concentration. These results indicate that the saponins are metabolized to the more active substances in the digestive tract and the metabolites attenuate the secretion of CAs from bovine adrenal chromaffin cells stimulated by ACh due to the noncompetitive blockade of the ACh-induced $Na^+$ influx into the cells. These findings may further explain the anti-stress action of ginseng.

  • PDF