• Title/Summary/Keyword: nicotinic acetylcholine receptor

Search Result 55, Processing Time 0.041 seconds

Regulation of Nicotinic Acetylcholine Receptor by Tyrosine Kinase in Autonomic Major Pelvic Ganglion Neurons

  • Kim, Dae-Ran;Ahn, Sung-Wan;Park, Kyu-Sang;Kong, In-Deok
    • Biomedical Science Letters
    • /
    • v.13 no.2
    • /
    • pp.119-125
    • /
    • 2007
  • It is widely known that protein tyrosine kinases (PTKs) are involved in controlling many biological processes such as cell growth, differentiation, proliferation, survival and apoptosis. An $\alpha3\beta4$ subunit combination acts as a major functional acetylcholine receptor (nAChRs) in male rat major pelvic ganglion (MPG) neurons, and their activation induces fast inward currents and intracellular calcium increases. Recently it has been reported that the activity of acetylcholine receptors (AChRs) in some neurons can be negatively regulated by PTKs. However, the exact mechanism of regulation of nAChRs by PTKs is poorly understood. Therefore, we examined the potential role particular in nAChR by PTK using electrophysiology and calcium imaging in male rat MPG neurons. ACh induced inward currents and $(Ca^{2+})_i$ increases in MPG neurons, concomitantly. These responses were inhibited by more than 90% in $Na^+$- or $Ca^{2+}$- free solution. $\alpha$-conotoxin AuIB, a selective $\alpha3\beta4$ nAChR blocket, inhibited ACh-induced inward currents. Genistein (10 $\mu$M), a broad-spectrum tyrosine kinase inhibitor, markedly decreased ACh-induced currents and $Ca^{2+}$ transients, whereas 10 $\mu$M genistin, an inactive analogue, had little effect. Overall these data suggest that the activities of $\alpha3\beta4$ AChRs in MPG neurons are positively regulated by PTK. In conclusion, trosine kinase may be one of the key factors in the regulation of $\alpha3\beta4$ nAChRs in rat MPG neurons, which may play an important roles in the autonomic neuronal function such as synaptic transmission, autonomic reflex, and neuronal plasticity.

  • PDF

Melatonin inhibits nicotinic acetylcholine receptor functions in bovine chromaffin cells

  • Jo, Su-Hyun;Lee, Seung-Hyun;Kim, Kyong-Tai;Choi, Se-Young
    • International Journal of Oral Biology
    • /
    • v.44 no.2
    • /
    • pp.50-54
    • /
    • 2019
  • Melatonin is a neurotransmitter that modulates various physiological phenomena including regulation and maintenance of the circadian rhythm. Nicotinic acetylcholine receptors (nAChRs) play an important role in oral functions including orofacial muscle contraction, salivary secretion, and tooth development. However, knowledge regarding physiological crosstalk between melatonin and nAChRs is limited. In the present study, the melatonin-mediated modulation of nAChR functions using bovine adrenal chromaffin cells, a representative model for the study of nAChRs, was investigated. Melatonin inhibited the nicotinic agonist dimethylphenylpiperazinium (DMPP) iodide-induced cytosolic free $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) increase and norepinephrine secretion in a concentration-dependent manner. The inhibitory effect of melatonin on the DMPP-induced $[Ca^{2+}]_i$ increase was observed when the melatonin treatment was performed simultaneously with DMPP. The results indicate that melatonin inhibits nAChR functions in both peripheral and central nervous systems.

Synthesis of Heterocyclic Substituted Pyridine Analogs as Potential Therapeutics for Neurodegenerative Diseases

  • Park, Haeil;Peter A. Crooks
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1999.04a
    • /
    • pp.1-4
    • /
    • 1999
  • The potential therapeutic benefit of nicotinic ligands in a variety of neurodegenerative pathologies involving the CNS has energized research efforts to develop nicotinic acetylcholine receptor (nAChR) subtype-selective ligands. In particular, there has been a concerted effort to develop nicotinic compounds with selectivity for CNS nAChRs as potential pharmacological tools in the management of these disorders. The characterization of other novel nicotinic ligands such as epibatidine. showing a marked increase in potency at nAChRs, has provided additional support for the development of potent, selective ligands at individual nAChR subtypes. We have developed and studied a number of nicotinic compounds to identify potential candidates exhibiting such selectivity. In the present study, we report the synthesis and biological evaluations of some azabicyclic and azatricyclic nicotine analogs to decipher the relationship among steric requirements of the nicotine's pyrrolidine ring system, binding affinity and subtype-selectivity.

  • PDF

Acetylcholine Induces Hyperpolarization Mediated by Activation of $K_{(ca)}$ Channels in Cultured Chick Myoblasts

  • Lee, Do-Yun;Han, Jae-Hee;Park, Jae-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.1
    • /
    • pp.37-43
    • /
    • 2005
  • Our previous report demonstrated that chick myoblasts are equipped with $Ca^{2+}$-permeable stretchactivated channels and $Ca^{2+}-activated$ potassium channels ($K_{Ca}$), and that hyperpolarization-induced by $K_{Ca}$ channels provides driving force for $Ca^{2+}$ influx through the stretch-activated channels into the cells. Here, we showed that acetylcholine (ACh) also hyperpolarized the membrane of cultured chick myoblasts, suggesting that nicotinic acetylcholine receptor (nAChR) may be another pathway for $Ca^{2+}$ influx. Under cell-attatched patch configuration, ACh increased the open probability of $K_{Ca}$ channels from 0.007 to 0.055 only when extracellular $Ca^{2+}$ was present. Nicotine, a nAChR agonist, increased the open probability of $K_{Ca}$ channels from 0.008 to 0.023, whereas muscarine failed to do so. Since the activity of $K_{Ca}$ channel is sensitive to intracellular $Ca^{2+}$ level, nAChR seems to be capable of inducing $Ca^{2+}$ influx. Using the $Ca^{2+}$ imaging analysis, we were able to provide direct evidence that ACh induced $Ca^{2+}$ influx from extracellular solution, which was dramatically increased by valinomycin-mediated hyperpolarization. In addition, ACh hyperpolarized the membrane potential from $-12.5{\pm}3$ to $-31.2{\pm}5$ mV by generating the outward current through $K_{Ca}$ channels. These results suggest that activation of nAChR increases $Ca^{2+}$ influx, which activates $K_{Ca}$ channels, thereby hyperpolarizing the membrane potential in chick myoblasts.

Does ginsenoside act as a ligand as other drugs do?

  • Nah, Seung-Yeol
    • Proceedings of the Ginseng society Conference
    • /
    • 2005.11a
    • /
    • pp.32-40
    • /
    • 2005
  • The last two decades have shown a marked expansion in publications of diverse effects of Panax ginseng. Ginsenosides, as active ingredients of Panax ginseng, are saponins found in only ginseng. Recently, a line of evidences shows that ginsenosides regulate various types of ion channel activity such as Ca$^{2+}$, K$^+$, Na$^+$, Cl$^-$, or ligand gated ion channels (i.e. 5-HT$_3$, nicotinic acetylcholine, or NMDA receptor) in neuronal, non-neuronal cells, and heterologously expressed cells. Ginsenosides inhibit voltage-dependent Ca$^{2+}$, K$^+$, and Na$^+$ channels, whereas ginsenosides activate Ca$^{2+}$-activated Cl$^-$ and Ca$^{2+}$-activated K$^+$ channels. Ginsenosides also inhibit excitatory ligand-gated ion channels such as 5-HT$_3$. nicotinic acetylcholine, and NMDA receptors. This presentation will introduce recent findings on the ginsenoside-induced differential regulations of ion channel activities as a ligand as other drugs do.

  • PDF

Synthesis of ($\pm$)-Methyl-(1-aryl-4-pyridin-3-yl-but-3-enyl)-amines

  • Jang, Jin-Hee;Sin, Kwan-Seog;Park, Hae-Il
    • Archives of Pharmacal Research
    • /
    • v.24 no.6
    • /
    • pp.503-507
    • /
    • 2001
  • trans-Metanicotine, a subtype (${\alpha}_4{\beta}_2$)-selective ligand for neuronal nicotinic acetylcholine receptor, is under clinical phase for Alzheimer's disease. An efficient synthetic route for ($\pm$)-methyl-(1-aryl-4-pyridin-3-yl-but-3-enyl)-am ices, derivatives of tracts-metanicotine, was explored. Allylation reaction of aryl aldimines with allylmagnesium bromide in THF gave ($\pm$)-methyl-(1-aryl-but-3-enyl)-amines. Protection of the amines with the Boc group and following Heck reaction of the N-Boc amines with 3-bromopyridine gave ($\pm$)-methyl-(1-aryl-4-pyridin-3-yl-but-3-enyl)-carbamic acid tert-butyl esters. Deprotection of the N-Boc group in aqueous 1 N-HCI solution gave the titled amines in good yields. Thus, trans-metanicotine analogues modified at the ${\alpha}-position$ of the methylamino group with amyl groups were obtained in 5 steps.

  • PDF

INFLUENCE OF GLUCOCORTICOIDS ON NICOTINIC AND MUSCARINIC STIMULATION-INDUCED CATECHOL-AMINE SECRETION FROM THE RAT ADRENAL GLAND

  • Lim, Dong-Yoon;Lee, Jae-Joon;Park, Cheol-Hee;Ko, Suk-Tai
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.242-242
    • /
    • 1996
  • The influence of glucocorticoids on the secretory responses of catecholamines (CA) evoked by acetylcholine (ACh), DMPP, McN-A-343, excess K$\^$+/ and Bay-K-8644 from the isolated perfused rat adrenal gland and to clarify the mechanism of its action. The perfusion of the synthetic glucocorticoid dexamethasone (10-100 uM) into an adrenal vein for 20min produced relatively a dose-dependent inhibition in CA secretion evoked by ACh (5.32mM), excess K$\^$+/ (56mM), DMPP (a selective nicotinic receptor agonist, 100uM for 2min), McN-A-343 (a muscarinic receptor agonist, 100uM for 4min), Bay-K-8644 (a calcium channel activator, 10 uM for 4min) and cyclopiazonic acid (a releaser of intracellular Ca$\^$2+/, 10uM for 4min).

  • PDF