• 제목/요약/키워드: nicotinamide

검색결과 237건 처리시간 0.026초

위령선 약침이 콜라겐으로 유도된 골관절염 모델에서 흰쥐의 PAG 영역에서 NOS 발현에 미치는 영향 (Effects of Clematis mandshurica Rupr. on Nitric Oxide Synthase in the Periaqueductal Gray of Collagenase-induced Rat Osteoarthritis Model)

  • 양국정;김순중;서일복;박세근;김정선;서정철;최선미;이혜정;김이화
    • Korean Journal of Acupuncture
    • /
    • 제22권4호
    • /
    • pp.109-116
    • /
    • 2005
  • 목적 : 골관절염은 진통을 수반하는 퇴행성 관절질환이며, 장애를 일으키는 주요한 원인이 된다. 또한 노인들에 있어서 골관절염은 매우 흔한 질환이라 할 수 있다. Nitric oxide(NO)는 Nitric Oxide Synthase(NOS)에 의하여 칼슘의존성통로를 통하여 L-arginine 으로부터 합성되어지며, NO는 중추신경계에 있어서 중요한 세포사이의 전달자이다. 방법 :본 연구에서는 위령선 으로부터 추출한 액이 콜라겐으로 유도된 관절염에 걸린 쥐의 dorsolateral periaqueductal gray(DL-PAG) 영역에서 nNOS(neuronal NOS)와 NOS에 대하여 미치는 영향 을 nNOS immunohistochemistry와 nicotinamide adenine dinucleotide phosphate-diaphorase(NADPH-d) 검사법을 통하여 조사하였다. 결과 : 골관절염이 유발된 흰쥐의 DL-PAG 영역에서 nNOS와 NOS의 발현억제가 관찰되었으며, 위령선이 콜라겐으로 유도된 골관절염에서 감소된 nNOS와 NOS의 발현이 증가되었다. 결론 : 본 연구를 통하여 위령선은 골관절염이 유발된 흰쥐의 DL-PAG에서의 nNOS와 NOS의 발현에 영향을 미친다는 결과를 얻을 수 있었다.

  • PDF

The Effects of Lycii Radicis Cortex on Inflammatory Response through an Oxidative Stress and AGEs-mediated Pathway in STZ-induced Diabetic Rats

  • Jung, Yu Sun;Shin, Hyeon Cheol
    • 대한한의학회지
    • /
    • 제37권2호
    • /
    • pp.62-75
    • /
    • 2016
  • Objectives: This study examined whether Lycii Radicis Cortex has an inhibitory effect on inflammatory response through an oxidative stress and advanced glycation endproducts (AGEs)-mediated pathway in streptozotocin (STZ)-induced type 1 diabetic rats. Methods: Lycii Radicis Cortex was orally administered to STZ-induced diabetic rats in doses of 80 or 160 mg/kg body weight/day for 2 weeks, and its effects were compared with those of diabetic control and normal rats. Results: The administration of Lycii Radicis Cortex decreased the elevated serum urea nitrogen and renal reactive oxygen species (ROS), and reduced the increased AGEs in the serum and kidney. The elevated protein expressions of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits in the kidney of diabetic control rats were significantly decreased after Lycii Radicis Cortex treatments. Moreover, the kidney of diabetic rats exhibited the up-regulation of receptor for AGEs (RAGE) and AGEs-related proteins; however, Lycii Radicis Cortex treatment also significantly reduced those expressions (excepted RAGE). In addition, the diabetic rats exhibited an up-regulation of the expression of proteins related to inflammation in the kidney, but Lycii Radicis Cortex administration reduced significantly the expression of the inflammatory proteins through the nuclear factor-kappa B (NF-${\kappa}B$) and activator protein-1 (AP-1) pathways. Conclusions: This study provides scientific evidence that Lycii Radicis Cortex exerts the antidiabetic effect by inhibiting the expressions of AGEs and NF-${\kappa}B$ in the STZ-induced diabetic rats.

Trichostatin A Modulates Angiotensin II-induced Vasoconstriction and Blood Pressure Via Inhibition of p66shc Activation

  • Kang, Gun;Lee, Yu Ran;Joo, Hee Kyoung;Park, Myoung Soo;Kim, Cuk-Seong;Choi, Sunga;Jeon, ByeongHwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권5호
    • /
    • pp.467-472
    • /
    • 2015
  • Histone deacetylase (HDAC) has been recognized as a potentially useful therapeutic target for cardiovascular disorders. However, the effect of the HDAC inhibitor, trichostatin A (TSA), on vasoreactivity and hypertension remains unknown. We performed aortic coarctation at the inter-renal level in rats in order to create a hypertensive rat model. Hypertension induced by abdominal aortic coarctation was significantly suppressed by chronic treatment with TSA (0.5 mg/kg/day for 7 days). Nicotinamide adenine dinucleotide phosphate-driven reactive oxygen species production was also reduced in the aortas of TSA-treated aortic coarctation rats. The vasoconstriction induced by angiotensin II (Ang II, 100 nM) was inhibited by TSA in both endothelium-intact and endothelium-denuded rat aortas, suggesting that TSA has mainly acted in vascular smooth muscle cells (VSMCs). In cultured rat aortic VSMCs, Ang II increased p66shc phosphorylation, which was inhibited by the Ang II receptor type I ($AT_1R$) inhibitor, valsartan ($10{\mu}M$), but not by the $AT_2R$ inhibitor, PD123319. TSA ($1{\sim}10{\mu}M$) inhibited Ang II-induced p66shc phosphorylation in VSMCs and in HEK293T cells expressing $AT_1R$. Taken together, these results suggest that TSA treatment inhibited vasoconstriction and hypertension via inhibition of Ang II-induced phosphorylation of p66shc through $AT_1R$.

Increase of NADPH-diaphorase Expression in Hypothalamus of Stat4 Knockout Mice

  • Hong, Mee-Sook;Song, Jeong-Yoon;Yun, Dong-Hwan;Cho, Jeong-Je;Chung, Joo-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권5호
    • /
    • pp.337-341
    • /
    • 2009
  • Signal transducer and activator of transcription 4 (STAT4), a STAT family member, mediates interleukin 12 (IL12) signal transduction. IL12 is known to be related to calorie-restricted status. In the central nervous system, IL12 also enhances the production of nitric oxide (NO), which regulates food intake. In this study, the expression of neuronal NO synthase (Nos1), which is also related to food intake, was investigated in the hypothalamic areas of Stat4 knockout (KO) mice using nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry, a marker for neurons expressing Nos1 enzyme. Western blots were also performed to evaluate Nos1 and Fos expression. Wild-type Balb/c (WT group, n=10 male) and Stat4 KO mice (Stat4 KO group, n=8 male) were used. The body weight and daily food intake in the WT group were $22.4{\pm}0.3$ and 4.4 g per day, while those in the Stat4 KO group were $18.7{\pm}0.4$ and 1.8 g per day, respectively. Stat4 mice had lower body weight and food intake than Balb/c mice. Optical intensities of NADPH-d-positive neurons in the paraventricular nucleus (PVN) and lateral hypothalamic area (LHA) of the Stat4 KO group were significantly higher than those of the WT group. Western blotting analysis revealed that the hypothalamic Nos1 and Fos expression of the Stat4 KO group was up-regulated, compared to that in the WT group. These results suggest that Stat4 may be related to the regulation of food intake and expression of Nosl in the hypothalamus.

이침자극(耳鍼刺戟)이 절식(絶食) Stress로 인(因)한 흰쥐 대뇌피질(大腦皮質)의 NADPH-diaphorase 신경세포(神經細胞)에 미치는 영향(影響) (Effects of Auricular Acupuncture on NADPH-diaphorase Neurons in Brain Cortex of Fasted Rats)

  • 이정현;김이화;이은용
    • Journal of Acupuncture Research
    • /
    • 제18권2호
    • /
    • pp.79-90
    • /
    • 2001
  • Objective : The aim of the present study is to investigate whether stimulating a specific auricular point(胃點) is effect on suppression of appetite. Methods : This study evaluated the changes of Reduced-Nicotinamide-Adenine-inucieotide-Phosphate-diaphorase(NADPH-d)-positive neurons using a histoehemical method. Staining intensities of NADPH-d-positive neurons were assessed in a quantitative fashion using a microdensitometrical method based on optical density by means of an image analyzer. Results : The results show as follows ; 1. In the RSG/RSA, FRI/FR2, HL, PAR1 area, The optical density of NADPH-d-positive neurons of fasted group was significantly decreased in comparison to fed group. 2. In most cortical area, It was not significant statistically, But the optical density of NADPH-d-positive neurons of fed with auricular acupuncture group was decreased in comparison to fed group. 3. In most cortical area, It was not significant statistically, But fasted with auricular acupuncture group increased the optical density of NADPH-d-positive neurons comparison to fasted group. Conclusions : We conclude that stimulating the specific auricular points is able to effect on NO(Nitric Oxide)-expression in the brain cortex of sprague dawley rats, The results suggest that auricular acupuncture may be useful for controlling obesity.

  • PDF

Effects of Reactive Oxygen Species and Nitrogen Species on the Excitability of Spinal Substantia Gelatinosa Neurons

  • Park, Joo Young;Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • 제41권3호
    • /
    • pp.141-147
    • /
    • 2016
  • Reactive oxygen species (ROS) and nitrogen species (RNS) are both important signaling molecules involved in pain transmission in the dorsal horn of the spinal cord. Xanthine oxidase (XO) is a well-known enzyme for the generation of superoxide anions ($O_2^{\bullet-}$), while S-nitroso-N-acetyl-DL-penicillamine (SNAP) is a representative nitric oxide (NO) donor. In this study, we used patch clamp recording in spinal slices of rats to investigate the effects of $O_2^{\bullet-}$ and NO on the excitability of substantia gelatinosa (SG) neurons. We also used confocal scanning laser microscopy to measure XO- and SNAP-induced ROS and RNS production in live slices. We observed that the ROS level increased during the perfusion of xanthine and xanthine oxidase (X/XO) compound and SNAP after the loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF-DA$), which is an indicator of intracellular ROS and RNS. Application of ROS donors such as X/XO, ${\beta}-nicotinamide$ adenine dinucleotide phosphate (NADPH), and 3-morpholinosydnomimine (SIN-1) induced a membrane depolarization and inward currents. SNAP, an RNS donor, also induced membrane depolarization and inward currents. X/XO-induced inward currents were significantly decreased by pretreatment with phenyl N-tert-butylnitrone (PBN; nonspecific ROS and RNS scavenger) and manganese(III) tetrakis(4-benzoic acid) porphyrin (MnTBAP; superoxide dismutase mimetics). Nitro-L-arginine methyl ester (NAME; NO scavenger) also slightly decreased X/XO-induced inward currents, suggesting that X/XO-induced responses can be involved in the generation of peroxynitrite ($ONOO^-$). Our data suggest that elevated ROS, especially $O_2^{\bullet-}$, NO and $ONOO^-$, in the spinal cord can increase the excitability of the SG neurons related to pain transmission.

Enhanced stability of NADH/dehydrogenase mixture system by water-soluble phospholipid polymers

  • Fukazawa, Kyoko;Ishihara, Kazuhiko
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제3권1호
    • /
    • pp.37-46
    • /
    • 2016
  • To maintain activity in a coenzyme/enzyme mixture system, such as ${\beta}$-nicotinamide adenine dinucleotide (NADH)/dehydrogenase, the water-soluble 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers as an additive were synthesized and investigated for their stabilizing function. The inhibitor for the NADH/dehydrogenase reaction was spontaneously formed when the NADH was stored in the dehydrogenase solution. Therefore, we hypothesized that if the additive polymer could interact with an inhibitor without any adverse effect on the dehydrogenase, the activity in the NADH/dehydrogenase mixture could be maintained. We selected lactose dehydrogenase (LDH) as the enzyme, and the NADH was dissolved and incubated at $37^{\circ}C$ in the LDH solution containing the polymers. The phospholipid polymers used in this study were poly(MPC) (PMPC), poly(MPC-co-3-trimethylammonium-2-hydroxypropyl methacrylate chloride) (PMQ) and poly[MPC-co-potassium 3-methacryloyloxypropyl sulfonate ($MSO_3$)] ($PMMSO_3$). The poly($MSO_3$) was used as a reference. For the PMQ and $PMSO_3$ aqueous solutions, the activity of the NADH/LDH mixture system decreased with incubation time as the same level or lower than that in the Tris buffered solution in the absence of the polymers. However, for the poly($MPC-co-MSO_3$) ($PMMSO_3$) aqueous solution, the activity of the NADH/LDH mixed system was six times higher than that in the buffered solution even after a 3-days incubation. The LDH activity was 1.5-1.8 times higher in the presence of the $PMMSO_3$ compared with that in the $PMSO_3$ solution. The mixture of two polymers, poly(MPC) and poly($MSO_3$), did not produce any stabilization. Thus, both the MPC and $MSO_3$ units in the polymer chain had important and cooperative effects for stabilizing the NADH/LDH mixture.

Transcriptome analyses of the ginseng root rot pathogens Cylindrocarpon destructans and Fusarium solani to identify radicicol resistance mechanisms

  • Li, Taiying;Kim, Jin-Hyun;Jung, Boknam;Ji, Sungyeon;Seo, Mun Won;Han, You Kyoung;Lee, Sung Woo;Bae, Yeoung Seuk;Choi, Hong-Gyu;Lee, Seung-Ho;Lee, Jungkwan
    • Journal of Ginseng Research
    • /
    • 제44권1호
    • /
    • pp.161-167
    • /
    • 2020
  • Background: The ascomycete fungi Cylindrocarpon destructans (Cd) and Fusarium solani (Fs) cause ginseng root rot and significantly reduce the quality and yield of ginseng. Cd produces the secondary metabolite radicicol, which targets the molecular chaperone Hsp90. Fs is resistant to radicicol, whereas other fungal genera associated with ginseng disease are sensitive to it. Radicicol resistance mechanisms have not yet been elucidated. Methods: Transcriptome analyses of Fs and Cd mycelia treated with or without radicicol were conducted using RNA-seq. All of the differentially expressed genes (DEGs) were functionally annotated using the Fusarium graminearum transcript database. In addition, deletions of two transporter genes identified by RNA-seq were created to confirm their contributions to radicicol resistance. Results: Treatment with radicicol resulted in upregulation of chitin synthase and cell wall integrity genes in Fs and upregulation of nicotinamide adenine dinucleotide dehydrogenase and sugar transporter genes in Cd. Genes encoding an ATP-binding cassette transporter, an aflatoxin efflux pump, ammonium permease 1 (mep1), and nitrilase were differentially expressed in both Fs and Cd. Among these four genes, only the ABC transporter was upregulated in both Fs and Cd. The aflatoxin efflux pump and mep1 were upregulated in Cd, but downregulated in Fs, whereas nitrilase was downregulated in both Fs and Cd. Conclusion: The transcriptome analyses suggested radicicol resistance pathways, and deletions of the transporter genes indicated that they contribute to radicicol resistance.

폐 침윤을 동반한 급성 중증 환자의 기관지 폐포 세척액에서 측정한 Pre-B-Cell Colony-Enhancing Factor의 임상적 유용성 (Clinical Utility of Pre-B-Cell Colony-Enhancing Factor in Bronchoalveolar Lavage Fluid of Acute Critical Ill Patients with Lung Infiltrates)

  • 이광하;홍상범
    • Tuberculosis and Respiratory Diseases
    • /
    • 제67권5호
    • /
    • pp.402-408
    • /
    • 2009
  • Background: Pre-B-cell colony enhancing factor (PBEF) has been suggested as a novel biomarker in sepsis and acute lung injury. We measured the PBEF in bronchoalveolar lavage (BAL) fluid of acute critically ill patients with lung infiltrates in order to evaluate the clinical utility of measuring PBEF in BAL fluid. Methods: BAL fluid was collected by bronchoscope from 185 adult patients with lung infiltrates. An enzyme-linked immunosorbent assay was then performed on the collected fluids to measure the PBEF. Results: Mean patient age was 59.9 ${\pm}$14.5 years and 63.8% of patients were males. The mean concentration of PBEF in BAL fluid was 17.5 ${\pm}$88.3 ng/mL, and patients with more than 9 ng/mL of PBEF concentration (n=26, 14.1%) had higher Acute Physiology and Chronic Health Evaluation (APACHE) II and Sequential Organ Failure Assessment (SOFA) scores on the BAL exam day. However, there were no significant differences in clinical characteristics between survivors and non-survivors. In patients with leukocytosis (n=93) seen on the BAL exam day, the linear regression analysis revealed a significant, positive relationship between PBEF and APACHE II ($r^2$=0.06), SOFA score ($r^2$=0.08), Clinical Pulmonary Infection Score ($r^2$=0.05), and plateau pressure in patients on ventilators ($r^2$=0.07) (p<0.05, respectively). In addition, multivariate regression analysis with PBEF as a dependent variable showed that the plateau pressure ($r^2$=0.177, p<0.05) was correlated positively with PBEF. Conclusion: The PBEF level in the BAL fluid may be a useful, new biomarker for predicting the severity of illness and ventilator-induced lung injury in critically ill patients with lung infiltates and leukocytosis.

Genetic and Expression Analysis of the SIRT1 Gene in Gastric Cancers

  • Zhang, Cao;Song, Jae-Hwi;Kang, Young-Whi;Yoon, Jung-Hwan;Nam, Suk-Woo;Lee, Jung-Young;Park, Won-Sang
    • Journal of Gastric Cancer
    • /
    • 제10권3호
    • /
    • pp.91-98
    • /
    • 2010
  • Purpose: Silent mating-type information regulation 2 homologue 1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent deacetylase. SIRT1 plays an important role in the regulation of cell death/survival and stress response in mammals. The aim of this study was to investigate whether the SIRT1 gene is involved in the development or progression of gastric cancers. Materials and Methods: SIRT1 and p53 genes in 86 gastric cancers were examined for genetic alterations by PCR-single strand conformation polymorphism sequencing, as well as SIRT1 protein expression in 170 gastric cancers by immunohistochemistry. Results: In the genetic analysis, we found SIRT1 and p53 mutations in two and 12 cases, respectively. Two missense mutations, c.599 C>T (T200I) and c.1258 G>A (E420K), were detected in the SIRT1 gene coding region. The SIRT1 and p53 mutation were found in mutually exclusive gastric cancers. The immunohistochemistry revealed that SIRT1 overexpression was found in 95 (55.9%) of 170 gastric cancers. Altered SIRT1 expression was not statistically associated with clinicopathological parameters, including tumor differentiation, location, lymph node metastasis, or p53 expression. Two cases with an SIRT1 mutation showed increased SIRT1 expression. Conclusions: These results suggest that genetic alterations and overexpression of the SIRT1 gene may contribute to gastric cancer development.