• 제목/요약/키워드: news sentiment analysis

검색결과 85건 처리시간 0.027초

부도예측 모형에서 뉴스 분류를 통한 효과적인 감성분석에 관한 연구 (A Study on Effective Sentiment Analysis through News Classification in Bankruptcy Prediction Model)

  • 김찬송;신민수
    • 한국IT서비스학회지
    • /
    • 제18권1호
    • /
    • pp.187-200
    • /
    • 2019
  • Bankruptcy prediction model is an issue that has consistently interested in various fields. Recently, as technology for dealing with unstructured data has been developed, researches applied to business model prediction through text mining have been activated, and studies using this method are also increasing in bankruptcy prediction. Especially, it is actively trying to improve bankruptcy prediction by analyzing news data dealing with the external environment of the corporation. However, there has been a lack of study on which news is effective in bankruptcy prediction in real-time mass-produced news. The purpose of this study was to evaluate the high impact news on bankruptcy prediction. Therefore, we classify news according to type, collection period, and analyzed the impact on bankruptcy prediction based on sentiment analysis. As a result, artificial neural network was most effective among the algorithms used, and commentary news type was most effective in bankruptcy prediction. Column and straight type news were also significant, but photo type news was not significant. In the news by collection period, news for 4 months before the bankruptcy was most effective in bankruptcy prediction. In this study, we propose a news classification methods for sentiment analysis that is effective for bankruptcy prediction model.

뉴스기사를 이용한 소비자의 경기심리지수 생성 (Construction of Consumer Confidence index based on Sentiment analysis using News articles)

  • 송민채;신경식
    • 지능정보연구
    • /
    • 제23권3호
    • /
    • pp.1-27
    • /
    • 2017
  • 경제주체들의 경기상황에 대한 판단 및 전망은 경기변동에 영향을 미치므로 경기심리지수와 거시경제지표들 간에는 밀접한 관련성을 나타내는 것으로 알려져 있다. 경기선행지표로 국내에서 많이 사용되는 경기심리지수에는 소비자동향조사, 기업경기조사, 경제심리지수가 있다. 그러나 설문조사를 통해 생성된 지수는 자료의 성격상 속보성이 떨어지는 문제가 있다. 본 연구에서는 이러한 정형데이터의 한계를 보완할 수 있도록 비정형데이터에서 정보를 추출해 경기심리지수를 생성하고, 경제분석에서의 활용 가능성을 검토하였다. 민간소비와 관련된 실물지표에는 소매판매업지수와 서비스업생산지수를 사용하였고, 고용지표에는 고용률과 실업률을, 가격지표에는 소비자물가상승률과 가계의 대출금리를 사용하여 지표들 간의 추이 분석 및 시차구조 파악을 위한 교차상관분석을 수행하였다. 마지막으로 이들 지표들에 대한 예측 가능성을 점검하였다. 분석결과, 다른 지표들의 선행지수로 많이 사용되는 소비자심리지수와 비교해 선택 지표들과 높은 상관관계를 보이며, 1~2개월 선행한 것으로 나타났다. 예측력 또한 향상되어 텍스트데이터에서 생성한 소비자 경기심리지수의 유용성이 확인되었다. 온라인에서 생성되는 뉴스기사나 소셜 SNS 등의 텍스트 데이터는 속보성이 뛰어나고, 커버리지가 넓어 특정 경제적 이슈가 발생할 경우 이것이 경제에 미치는 영향을 빠르게 파악할 수 있다는 점에서 경기판단지표로써의 잠재적 가능성이 클 것으로 보인다. 경제분석에서 비정형데이터를 활용한 국내연구는 초기 단계지만 데이터의 유용성이 확인되면 그 활용도가 크게 높아질 것으로 기대한다.

SNS와 뉴스기사의 감성분석과 기계학습을 이용한 주가예측 모형 비교 연구 (A Comparative Study between Stock Price Prediction Models Using Sentiment Analysis and Machine Learning Based on SNS and News Articles)

  • 김동영;박제원;최재현
    • 한국IT서비스학회지
    • /
    • 제13권3호
    • /
    • pp.221-233
    • /
    • 2014
  • Because people's interest of the stock market has been increased with the development of economy, a lot of studies have been going to predict fluctuation of stock prices. Latterly many studies have been made using scientific and technological method among the various forecasting method, and also data using for study are becoming diverse. So, in this paper we propose stock prices prediction models using sentiment analysis and machine learning based on news articles and SNS data to improve the accuracy of prediction of stock prices. Stock prices prediction models that we propose are generated through the four-step process that contain data collection, sentiment dictionary construction, sentiment analysis, and machine learning. The data have been collected to target newspapers related to economy in the case of news article and to target twitter in the case of SNS data. Sentiment dictionary was built using news articles among the collected data, and we utilize it to process sentiment analysis. In machine learning phase, we generate prediction models using various techniques of classification and the data that was made through sentiment analysis. After generating prediction models, we conducted 10-fold cross-validation to measure the performance of they. The experimental result showed that accuracy is over 80% in a number of ways and F1 score is closer to 0.8. The result can be seen as significantly enhanced result compared with conventional researches utilizing opinion mining or data mining techniques.

Analysis of Business Performance of Local SMEs Based on Various Alternative Information and Corporate SCORE Index

  • HWANG, Sun Hee;KIM, Hee Jae;KWAK, Dong Chul
    • 융합경영연구
    • /
    • 제10권3호
    • /
    • pp.21-36
    • /
    • 2022
  • Purpose: The purpose of this study is to compare and analyze the enterprise's score index calculated from atypical data and corrected data. Research design, data, and methodology: In this study, news articles which are non-financial information but qualitative data were collected from 2,432 SMEs that has been extracted "square proportional stratification" out of 18,910 enterprises with fixed data and compared/analyzed each enterprise's score index through text mining analysis methodology. Result: The analysis showed that qualitative data can be quantitatively evaluated by region, industry and period by collecting news from SMEs, and that there are concerns that it could be an element of alternative credit evaluation. Conclusion: News data cannot be collected even if one of the small businesses is self-employed or small businesses has little or no news coverage. Data normalization or standardization should be considered to overcome the difference in scores due to the amount of reference. Furthermore, since keyword sentiment analysis may have different results depending on the researcher's point of view, it is also necessary to consider deep learning sentiment analysis, which is conducted by sentence.

온라인 뉴스를 이용한 기업평판 구성요인 탐색 및 지수 개발 연구 : 감성분석과 AHP적용 (Exploration of Constituent Factors for Corporate Reputation and Development of Index Using Online News : Sentiment Analysis and AHP Application)

  • 이병현;최일영;이정재;김재경;강현모
    • 한국IT서비스학회지
    • /
    • 제19권6호
    • /
    • pp.145-159
    • /
    • 2020
  • Because of the recent development of information and communication technology, companies are exposed to various media such as blogs, social media, and YouTube. In particular, exposed news affects the company's reputation. So, while positive news can improve corporate value, negative news can lead to financial losses for the company. In this study, we redefine corporate reputation as social responsibility, vision and leadership, financial performance, products and services through existing literature, and conducted an AHP survey with a total of four components to calculate the weight of each factor. As a result of the calculation, the proportion of financial performance was the highest at 0.41, and products and services, vision and leadership, and social responsibility were the lowest. In addition, in order to measure the reputation of a company, it is classified as a component that defines online news using the LDA technique. In addition, through sentiment analysis, an index for each corporate reputation factor was derived, and the reputation index was calculated by combining it with the AHP analysis result, and Spearman ranking correlation analysis was performed to secure the validity of the research results. Therefore, the significance of this study is that the definition and importance of the constituent factors can contribute to the future planning and development direction of the company, and also contribute to the derivation of the corporate reputation index. This study is significant in that a new analysis methodology that applied AHP analysis results to sentiment analysis was suggested.

감성분석과 토픽모델링을 활용한 농촌태양광 관련 이슈 연구 : 언론 기사와 블로그 포스트 비교 (Application of Sentiment Analysis and Topic Modeling on Rural Solar PV Issues : Comparison of News Articles and Blog Posts)

  • 기재홍;안승혁
    • 디지털융복합연구
    • /
    • 제18권9호
    • /
    • pp.17-27
    • /
    • 2020
  • 사회적 의제 설정 영향력을 지닌 미디어인 언론 기사와 블로그 포스트에서 농촌태양광이 어떻게 다루어지고 있는지 분석하기 위해 텍스트 마이닝 방법을 활용하였다. 농촌태양광을 키워드로 웹스크래핑을 통해 기사와 블로그 포스트의 텍스트 자료를 수집하고, 이에 대해 감성분석과 토픽모델 기법을 적용하여 연구를 수행했다. 감성분석 결과 농촌태양광에 대한 텍스트에서 두 매체 모두 긍정적인 입장을 가지는 비율이 높았는데, 블로그의 경우 기사에 비해 부정적인 내용을 담은 텍스트의 비중이 훨씬 낮은 것을 확인할 수 있었다. 그리고 토픽모델링 결과로 긍정 기사는 정부의 보급계획 관련 토픽들의 비중이 컸고, 부정 기사는 다양한 토픽들의 비중이 고르게 분포하였다. 블로그는 긍정 포스트의 경우 농촌 지역 설치 관련 토픽들이, 부정 포스트는 환경 피해 관련 토픽들이 가장 큰 부분을 차지했다. 기존에 별개로 이루어지던 감성분석과 토픽모델링을 결합하는 연구 방식을 제시함으로써 농촌태양광에 대한 이슈를 효과적으로 파악할 수 있었다.

빅데이터 분석기법을 활용한 아파트 가격 관련 뉴스 기사의 극성 분석 (A Study on the Polarity of Apartment Price News Using Big Data Analysis Method)

  • 조상연;홍은표
    • 디지털융복합연구
    • /
    • 제17권9호
    • /
    • pp.47-54
    • /
    • 2019
  • 본 연구는 빅데이터 분석 방법인 오피니언 마이닝을 사용하여 아파트 가격 관련 뉴스 기사의 극성을 확인하는 연구로 자료는 2012년, 2018년 2년간 네이버에 게시된 인터넷 뉴스 기사를 사용하였다. 감성분석 모형을 모델링하고 주제 지향형 감성사전 구축 방법을 제안하였다. 제안한 감성분석 모형을 통해 분석한 결과, 아파트 가격이 상승하는 시기에는 사회적 이슈 선정에 있어서 언론사의 성향에 따라 차이가 있는 것을 확인하였고 정부와 동일한 성향의 언론사에서 긍정 기사가 많은 것을 확인하였다. 부동산 분야에서 사용할 수 있는 감성분석 모형을 제시하고 부동산 관련 비정형 데이터의 극성을 분석하였다는 것에 의의가 있다. 향후 다양한 분야에 접목하기 위해서는 주제별 감성사전을 구축해야 하며 다양한 비정형 데이터를 수집하고 수집 기간을 확장하는 것이 필요하다.

Word2Vec을 활용한 뉴스 기반 주가지수 방향성 예측용 감성 사전 구축 (News based Stock Market Sentiment Lexicon Acquisition Using Word2Vec)

  • 김다예;이영인
    • 한국빅데이터학회지
    • /
    • 제3권1호
    • /
    • pp.13-20
    • /
    • 2018
  • 주식 시장에 대한 예측은 오랜 기간 많은 이들의 꿈이었다. 하지만 수많은 노력에도 불구하고 주식 시장을 정확하게 예측하기란 쉬운 일이 아니었다. 본 연구는 주식 시장의 방향성에 주목하여 이 방향성을 예측할 수 있는 감성사전을 구축하는 새로운 방법을 제시한다. 이를 위해 2015년 1월 1일부터 2017년 12월 31일까지 3년간의 증시 뉴스 25,000여 건의 데이터를 수집하여, 문맥을 고려하기 위한 Word2Vec을 적용하였다. 이를 바탕으로 뉴스에 감성분석을 실시하여 KOSPI 종가 지수를 예측해 보았다.

Framing North Korea on Twitter: Is Network Strength Related to Sentiment?

  • Kang, Seok
    • Journal of Contemporary Eastern Asia
    • /
    • 제20권2호
    • /
    • pp.108-128
    • /
    • 2021
  • Research on the news coverage of North Korea has been paying less attention to social media platforms than to legacy media. An increasing number of social media users post, retweet, share, interpret, and set agendas on North Korea. The accessibility of international users and North Korea's publicity purposes make social media a venue for expression, news diversity, and framing about the nation. This study examined the sentiment of Twitter posts on North Korea from a framing perspective and the relationship between network strengths and sentiment from a social network perspective. Data were collected using two tools: Jupyter Notebook with Python 3.6 for preliminary analysis and NodeXL for main analysis. A total of 11,957 tweets, 10,000 of which were collected using Python and 1,957 tweets using NodeXL, about North Korea between June 20-21, 2020 were collected. Results demonstrated that there was more negative sentiment than positive sentiment about North Korea in the sampled Twitter posts. Some users belonging to small network sizes reached out to others on Twitter to build networks and spread positive information about North Korea. Influential users tended to be impartial to sentiment about North Korea, while some Twitter users with a small network exhibited high percentages of positive words about North Korea. Overall, marginalized populations with network bonding were more likely to express positive sentiment about North Korea than were influencers at the center of networks.

Consumer Animosity to Foreign Product Purchase: Evidence from Korean Export to China

  • Kim, Jin-Hee;Kim, Myung Suk
    • Journal of Korea Trade
    • /
    • 제24권6호
    • /
    • pp.61-81
    • /
    • 2020
  • Purpose - This paper examines how the consumer animosity of partner country influences the purchase of foreign products. We analyzed news sentiment to determine whether Chinese consumer's animosity affect the purchase of the products made in Korea around the time when the U.S. Terminal High Altitude Area Defense missile system was deployed in South Korea. Design/methodology - To measure the tone of Chinese consumer animosity more carefully, we utilized a text mining technique of the Chinese language to read the public's opinion. Using Chinese news paper's editorials of 2015.1-2018.10, we analyzed the sentiment toward Korea and regressed it with Korean export to China. Findings - Empirical results report that Chinese consumers tended to reduce their purchase of consumer goods from Korea when the animosity increased, that is, the sentiments of Chinese news editorials were negative. In contrast, the animosity did not affect the purchase of Korean intermediates or raw materials. We further analyzed the effect by dividing the animosity into three categories; politics, economics, and culture. Among these groups, political news exhibits a unique effect on Chinese purchase on consumer goods from Korea. Originality/value - Existing literature on animosity models has measured the animosity by collecting the consumers' opinions through survey at a given time point, whereas it is measured by analyzing the tone of the press release by sentiment analysis during the time period around the event occurrence in this study.