국보 제1호인 숭례문은 2008년 2월 10일 화재로 일부가 소실되었으나 화재 이후 복구 작업을 통해 2013년 5월 4일 시민에게 공개되었다. 이로 인해 숭례문은 국가적으로 큰 이슈가 되어 언론의 관심을 받으며 동시에 많은 연구의 대상이 되었다. 본 연구는 문화재로서 숭례문을 키워드로 하여 2002년부터 2016년까지 신문 기사에 대한 빈도분석을 통해 숭례문 관련 어떤 키워드들이 자주 나타나고 있는지에 대해 파악하였다. 또한 추출된 숭례문 관련 키워드들간 연관관계 분석을 통해 키워드간 연결의 맥락을 파악하고 분석하였다. 다음으로 숭례문 화재 전후, 언론사별 주요 키워드 추출을 통해 공통점과 차이점을 보여줌으로써 관점의 다양성을 제공하였다. 본 연구를 통해 문화재로서 숭례문 관련 키워드는 화재 이후에 나타난 키워드가 전체 기사에서 고빈도어로 나타남을 알 수 있었고 몇 가지 키워드간 상관관계가 높게 나타났다. 또한 화재 전후 키워드에는 명확한 차이를 보이고 있었으며 언론사별 키워드에서 상위 키워드들은 명확한 차이는 보여주지 않았지만 차상위 키워드들은 차이가 발생하여 언론사별로 주로 다루어진 기사들의 내용은 차이가 있다는 것을 발견했다. 본 연구는 문화재로서 숭례문 관련 기사에 대해 텍스트마이닝 기법을 활용하여 다량의 데이터를 분석하였음에 의미가 있으며 정보생산자 및 정보소비자들에게 숭례문 관련 기사의 동향과 정보를 제공할 수 있을 것이라 기대한다.
본 논문에서는 온라인 뉴스 기사에서 자동으로 추출된 키워드 집합을 활용하여 특정 시점에서의 세부 주제별 토픽을 추출하고 정형화하는 새로운 방법론을 제시한다. 이를 위해서, 우선 다량의 텍스트 집합에 존재하는 개별 단어들의 중요도를 측정할 수 있는 복수의 통계적 가중치 모델들에 대한 비교 실험을 통해 TF-IDF 모델을 선정하였고 이를 활용하여 주요 키워드 집합을 추출하였다. 또한 추출된 키워드들 간의 의미적 연관성을 효과적으로 계산하기 위해서 별도로 수집된 약 1,000,000건 규모의 뉴스 기사를 활용하여 단어 임베딩 벡터 집합을 구성하였다. 추출된 개별 키워드들은 임베딩 벡터 형태로 수치화되고 K-평균 알고리즘을 통해 클러스터링 된다. 최종적으로 도출된 각각의 키워드 군집에 대한 정성적인 심층 분석 결과, 대부분의 군집들이 레이블을 쉽게 부여할 수 있을 정도로 충분한 의미적 집중성을 가진 토픽들로 평가되었다.
본 연구는 경향신문, 한겨레, 동아일보 세 개의 신문기사가 가지고 있는 내용 및 논조에 어떠한 차이가 있는지를 객관적인 데이터를 통해 제시하고자 시행되었다. 본 연구는 텍스트 마이닝 기법을 활용하여 신문기사의 키워드 단순빈도 분석과 Clustering, Classification 결과를 분석하여 제시하였으며, 경제, 문화 국제, 사회, 정치 및 사설 분야에서의 신문사 간 차이점을 분석하고자 하였다. 신문기사의 문단을 분석단위로 하여 각 신문사의 특성을 파악하였고, 키워드 네트워크로 키워드들 간의 관계를 시각화하여 신문사별 특성을 객관적으로 볼 수 있도록 제시하였다. 신문기사의 수집은 신문기사 데이터베이스 시스템인 KINDS에서 2008년부터 2012년까지 해당 주제로 주제어 검색을 하여 총 3,026개의 수집을 하였다. 수집된 신문기사들은 불용어 제거와 형태소 분석을 위해 Java로 구현된 Lucene Korean 모듈을 이용하여 자연어 처리를 하였다. 신문기사의 내용 및 논조를 파악하기 위해 경향신문, 한겨레, 동아일보가 정해진 기간 내에 일어난 특정 사건에 대해 언급하는 단어의 빈도 상위 10위를 제시하여 분석하였고, 키워드들 간 코사인 유사도를 분석하여 네트워크 지도를 만들었으며 단어들의 네트워크를 통해 Clustering 결과를 분석하였다. 신문사들마다의 논조를 확인하기 위해 Supervised Learning 기법을 활용하여 각각의 논조에 대해 분류하였으며, 마지막으로는 분류 성능 평가를 위해 정확률과 재현률, F-value를 측정하여 제시하였다. 본 연구를 통해 문화 전반, 경제 전반, 정치분야의 통합진보당 이슈에 대한 신문기사들에 전반적인 내용과 논조에 차이를 보이고 있음을 알 수 있었고, 사회분야의 4대강 사업에 대한 긍정-부정 논조에 차이가 있음을 발견할 수 있었다. 본 연구는 지금까지 연구되어왔던 한글 신문기사의 코딩 및 담화분석 방법에서 벗어나, 텍스트 마이닝 기법을 활용하여 다량의 데이터를 분석하였음에 의미가 있다. 향후 지속적인 연구를 통해 분류 성능을 보다 높인다면, 사람들이 뉴스를 접할 때 그 뉴스의 특정 논조 성향에 대해 우선적으로 파악하여 객관성을 유지한 채 정보에 접근할 수 있도록 도와주는 신뢰성 있는 툴을 만들 수 있을 것이라 기대한다.
오늘날 인터넷 사용자들은 블로그나 뉴스, 인터넷 게시판 등의 매체에서 댓글을 통해 다른 사람의 의견을 살피고 자신의 의견을 나타내고 있다. 그러나 현재 대부분의 블로그나 인터넷 포털 사이트의 경우 기사나 댓글들을 순차적인 목록 형태로 제공하므로 사용자가 원하는 내용의 댓글을 검색하거나 살펴보는 것은 힘든 일이다. 또한 댓글 사용자가 증가함에 따라 스팸 댓글이나 악플 등이 사회 문제가 되기도 한다. 본 논문에서는 다음 아고라(Daum AGORA) 웹 블로그의 게시글과 댓글을 통계적으로 분석하고 유사도를 기반으로 클러스터링하는 시스템을 제안한다. 본 시스템은 클러스터링 결과를 시각화하여 간단한 스크린 뷰(screen view)로 보여준다. 또한, 본 시스템은 생물정보학에서 잘 알려진 정렬 기법인 Needleman-Wunsch 알고리즘을 이용해 스팸 댓글을 필터링한다.
This research proposes an alternative approach to machine learning based ones for text categorization. For using machine learning based approaches for any task of text mining, documents should be encoded into numerical vectors; it causes two problems: huge dimensionality and sparse distribution. Although there are various tasks of text mining such as text categorization, text clustering, and text summarization, the scope of this research is restricted to text categorization. The idea of this research is to avoid the two problems by encoding a document or documents into a table, instead of numerical vectors. Therefore, the goal of this research is to improve the performance of text categorization by proposing approaches, which are free from the two problems.
This study was conducted to obtain useful information on the development of the future second-hand fashion market by obtaining information on the current situation through unstructured text data distributed as news articles related to 'purchase of second-hand clothing' and 'purchase of second-hand luxury goods'. Text-based unstructured data was collected on a daily basis from Naver news from January 1st to December 31st, 2022, using 'purchase of second-hand clothing' and 'purchase of second-hand luxury goods' as collection keywords. This was analyzed using text mining, and the results are as follows. First, looking at the frequency, the collection data related to the purchase of second-hand luxury goods almost quadrupled compared to the data related to the purchase of second-hand clothing, indicating that the purchase of second-hand luxury goods is receiving more social attention. Second, there were common words between the data obtained by the two collection keywords, but they had different words. Regarding second-hand clothing, words related to donations, sharing, and compensation sales were mainly mentioned, indicating that the purchase of second-hand clothing tends to be recognized as an eco-friendly transaction. In second-hand luxury goods, resale and genuine controversy related to the transaction of second-hand luxury goods, second-hand trading platforms, and luxury brands were frequently mentioned. Third, as a result of clustering, data related to the purchase of second-hand clothing were divided into five groups, and data related to the purchase of second-hand luxury goods were divided into six groups.
Journal of Information Technology Applications and Management
/
제22권1호
/
pp.77-93
/
2015
As the range of the customer choice becomes more diverse, the average life span of companies' products and services is becoming shorter. Most companies are striving to maximize the revenue by understanding the customer's needs and providing customized products and services. However, companies had to bear a significant burden, in terms of the time and cost involved in the process of determining each individual customer's needs. Therefore, an alternative method is employed that involves grouping the customers into different categories based on certain criteria and establishing a marketing strategy tailored for each group. In this way, customer segmentation and customer clustering are performed using demographic information and behavioral information. Demographic information included sex, age, income level, and etc., while behavioral information was usually identified indirectly through customers' purchase history and search history. However, there is a limitation regarding companies' customer behavioral information, because the information is usually obtained through the limited data provided by a customer on a company's website. This is because the pattern indicated when a customer accesses a particular site might not be representative of the general tendency of that customer. Therefore, in this study, rather than the pattern indicated through a particular site, a customer's interest is identified using that customer's access record pertaining to external news. Hence, by utilizing this method, we proposed a methodology to perform customer segmentation. In addition, by extracting the main issues through a topic analysis covering approximately 3,000 Internet news articles, the actual experiment applying customer segmentation is performed and the applicability of the proposed methodology is analyzed.
1990년대 중반에 협업 필터링의 출현으로 인하여 추천시스템에 관련된 연구가 늘어나게 되었다. 협업 필터링의 출현 이후 내용 기반 필터링, 협업 필터링과 내용 기반 필터링이 혼합된 하이브리드 필터링 등 새로운 기법들이 출현함으로써 2000년대에는 추천시스템의 연구가 눈에 띄게 증가하였다. 하지만 현재까지 추천시스템에 관련된 문헌들에 대한 리뷰와 분류가 체계적으로 되어있지 않다. 이와 같은 문제에 대한 해결방안으로써, 본 연구에서는 2001년부터 2010년도까지의 추천시스템에 관련된 문헌들 중 MIS Journal Ranking의 125개의 저널에서 추천시스템(Recommender system, Recommendation system), 협업 필터링(Collaborative Filtering), 내용 기반 필터링(Content based Filtering), 개인화 시스템(Personalized system) 등의 5가지 키워드로 제한하여 조사하였다. 총 37개의 저널에서 논문을 검색하였으며, 검색되어진 논문을 분석한 결과 추천시스템과 관련이 없는 논문을 제외한 총 187개의 논문을 선정하여 분석하였다. 이 연구에서는 그러나 컨퍼런스 논문, 석사, 박사학위 논문, 영어로 작성되지 않은 논문, 완성되지 않은 논문 등은 제외하였다. 본 연구에서는 187개의 논문을 분석하여 2001년부터 2010년까지의 각각의 년도 별 추천시스템의 연구에 대한 동향 분석, Journal별 추천시스템의 게재 분류, 추천시스템 어플리케이션의 사용 분야(책, 문서, 이미지, 영화, 음악, 쇼핑, TV 프로그램, 기타)별 분류 및 분석, 추천시스템에 사용된 데이터마이닝 기술(연관 규칙, 군집화, 의사 결정나무, 최근접 이웃 기법, 링크 분석 기법, 신경망, 회귀분석, 휴리스틱 기법)별 분류 및 분석을 수행하였다. 따라서 본 연구에서 제안한 각각의 분류 및 분석 결과들을 통하여 현재까지 추천시스템의 연구에 대한 연구 동향을 파악 할 수 있었으며, 분석결과를 통해 추천시스템에 관심이 있는 연구자와 전문가에게 미래의 추천시스템의 연구에 대한 가이드라인을 제시 할 수 있을 것이라고 기대한다.
인터넷과 컴퓨터 기술이 발전함에 따라 정보의 양이 폭발적으로 증가하였으며 사용자의 다양한 요구가 생겨나게 되었다. 이로 인해 대용량의 문서를 효과적으로 분류하기 위한 다양한 방법의 연구가 필요하게 되었다. 기존의 문서 범주화는 분서의 분류를 위해 연관된 문서의 키워드를 중심으로 하는 방법을 사용하였다. 그러나 본 논문에서는 연관규칙을 이용하여 범주 내의 문서들 간에 연관성 있는 키워드들의 집합을 추출하고 각 범주 별로 의미적으로 대표성을 가진 키워드들로 분류 규칙을 생성한다. 또한 효율적인 키워드 생성을 위한 데이터 전처리 방안을 제시하고, 새로운 문서 범주를 예측한다. 프로파일의 분류성능을 높이기 위한 분류함수를 설계하고 실험을 통하여 성능을 측정한다. 마지막으로 평면적인 범주 구조에서 확장하여 계층적인 분류체계 구조에서도 적용할 수 있는 자동분류 방안을 제시한다.
새로운 문서를 기존에 존재하는 클래스들에 할당하는 방법을 문서의 자동 분류라고 한다. 문서의 자동 분류는 뉴스 그룹의 기사분류, 웹 문서의 범주화, 전자 메일의 순서화, 사용자의 관심을 학습하여 보다 정확한 정보 검색을 제시하는데 사용될수 있다. 본 논문에서는 한국어 문서분류의 정확도를 높이기 위하여 문서내의 모든 단어들에 대한 확률값을 사용하여, 문서를 분류하는 기존의 방법과 달리 문서의 주제어를 선정하여 주제어로 선정된 단어들에 가중치를 부여하고 그렇지 않은 단어들에 대해서는 제거하너가 낮은 가중치를 부여하는 베이지안 분류자를 사용한다. 문서에는 특징으로 추출된 단어가 적어 문서를 분류하기 위한 만족할 만한 정보를 제공하지 못할 경우에 부족한 문서의 특징을 보충하기 위하여 말뭉치로부터 자동 단어 군집화를 통해 형성된 연관 단어 군집을 사용한다. 이러한 방법을 한국어 문서에 적용한 결과 기존의 베이지안 확률을 사용한 분류법보다 향상된 분류 정확도를 얻을 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.