• 제목/요약/키워드: news Web

검색결과 247건 처리시간 0.024초

검증 자료를 활용한 가짜뉴스 탐지 자동화 연구 (A Study on Automated Fake News Detection Using Verification Articles)

  • 한윤진;김근형
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권12호
    • /
    • pp.569-578
    • /
    • 2021
  • 오늘날 웹의 발전으로 우리는 각종 언론 매체를 통해 온라인 기사를 쉽게 접하게 된다. 온라인 기사를 쉽게 접할 수 있게 된 만큼 거짓 정보를 진실로 위장한 가짜뉴스 또한 빈번하게 찾아볼 수 있다. 가짜뉴스가 전 세계적으로 대두되면서 국내에서도 가짜뉴스를 탐지하기 위한 팩트 체크 서비스가 제공되고 있으나, 이는 전문가 기반의 수동 탐지 방법을 기반으로 하며 가짜뉴스 탐지를 자동화하는 기술에 대한 연구가 계속해서 활발하게 이루어지고 있다. 기존 연구는 기사 작성에 사용된 문맥의 특성이나, 기사 제목과 기사 본문의 내용 비교를 통한 탐지 방법이 가장 많이 사용되고 있으나, 이러한 시도는 조작의 정밀도가 높아졌을 때 탐지가 어려워질 수 있다는 한계를 가진다. 따라서 본 논문에서는 기사 조작의 발달에 따른 영향을 받지 않기 위하여 기사의 진위 여부를 판단할 수 있는 검증기사를 함께 사용하는 방법을 제안한다. 또한 가짜뉴스 탐지 정확도를 개선시킬 수 있도록 실험에 사용되는 기사와 검증기사를 문서 요약 모델을 통해 요약하는 과정을 추가했다. 본 논문에서는 제안 알고리즘을 검증하기 위해 문서 요약 기법 검증, 검증기사 검색 기법 검증, 그리고 최종적인 제안 알고리즘의 가짜뉴스 탐지 정확도 검증을 진행하였다. 본 연구에서 제안한 알고리즘은 다양한 언론 매체에 적용하여 기사가 온라인으로 확산되기 이전에 진위 여부를 판단하는 방법으로 유용하게 사용될 수 있다.

웹 2.0 환경에서 RSS를 활용한 데이터방송 서비스 구현에 대한 연구 (A Study on Development of Data Broadcasting Service Using RSS on Web 2.0 Environment)

  • 장윤용;임현정;임순범
    • 한국멀티미디어학회논문지
    • /
    • 제12권5호
    • /
    • pp.664-676
    • /
    • 2009
  • 데이터방송이 가능해지면서 디지털 TV, IPTV, DMB 등을 통해 다양한 콘텐츠를 이용할 수 있게 되었지만 사용자를 만족시킬 만한 킬러 콘텐츠가 부족한 상황이다. 반면 웹의 경우 사용자 중심의 서비스를 지향하는 웹 2.0의 등장으로 콘텐츠 시장이 크게 성장하였다. 이러한 웹 2.0의 개념과 기술을 데이터방송에 접목한다면 콘텐츠 활성화에 기여할 것으로 기대된다. 본 논문에서는 데이터방송에서 웹 2.0 적용하기 위한 구체적인 예로 RSS를 활용하는 방안을 제안한다. 이에 따라 지상파 DMB 데이터방송에서 최신 정보 제공이 중요한 뉴스 등을 저작 단계에서 RSS를 이용하여 서비스를 생성하는 시스템을 개발했다. 또한 IPTV에서는 저작단계에서 RSS를 활용하는 생성 시스템뿐만 아니라 사용자가 원하는 RSS Feed를 직접 선택해서 정보를 이용할 수 있는 콘텐츠를 구현했다. 이를 통해 콘텐츠 저작과정이 간소화되고 웹의 최신 정보 제공이 용이하게 되어 사용자에게 다양한 서비스를 제공할 수 있을 것이라 기대한다.

  • PDF

시멘틱 웹 환경에서의 개인화 검색 (Personalized Search Service in Semantic Web)

  • 김제민;박영택
    • 정보처리학회논문지B
    • /
    • 제13B권5호
    • /
    • pp.533-540
    • /
    • 2006
  • 웹에 분산된 모든 윈 페이지는 구조가 서로 다르다. 시멘틱 웹 환경은 이형적인 구조를 갖는 웹 페이지들의 메타데이터 바탕으로 시멘틱 검색이 가능하다. 그러나 일반적으로 사용자의 요구에 따른 시멘틱 김색은 상황에 따라 엄청난 수의 검색 결과를 내놓는다. 따라서 검색 결과에 대해 각 사용자에 맞는 검색 결과 순위를 적용할 필요가 있다. Culture Finder는 시멘틱 웹 검색 에이전트들이 개인화 된 문화 정보를 검색할 수 있도록 도움을 준다. Culture Finder는 웹에 존재하는 각 웹 페이지에 대한 메타 데이터를 작성하고, 시멘틱 검색을 이행하며 사용자 프로파일을 기반으로 삼아 검색 결과에 대한 순위 점수를 계산한다. Culture Finder에는 개인화 된 시멘틱 검색을 효율적으로 실행하기 위해 중요한 5가지 기법이 적용되었다. 사용자의 검색 행위로부터 사용자 프로파일을 생성하기 위한 기계 학습기법, 시멘틱 웹 검색 에이전트를 위한 효율적인 시멘틱 검색 기법, 사용자 질의의 효과적인 파악을 위한 질의 분석 기법, 각 사용자에게 적합한 검색 결과를 제공하기 위한 순위 적용 기술, 메타데이터를 생성하기 위한 상위 온톨로지 표현 방법, 본 논문에서는 Culture Finder의 구조를 통해서 시멘틱 개인화 검색에 대한 기법을 제안한다.

뉴스와 주가 : 빅데이터 감성분석을 통한 지능형 투자의사결정모형 (Stock-Index Invest Model Using News Big Data Opinion Mining)

  • 김유신;김남규;정승렬
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.143-156
    • /
    • 2012
  • 누구나 뉴스와 주가 사이에는 밀접한 관계를 있을 것이라 생각한다. 그래서 뉴스를 통해 투자기회를 찾고, 투자이익을 얻을 수 있을 것으로 기대한다. 그렇지만 너무나 많은 뉴스들이 실시간으로 생성 전파되며, 정작 어떤 뉴스가 중요한지, 뉴스가 주가에 미치는 영향은 얼마나 되는지를 알아내기는 쉽지 않다. 본 연구는 이러한 뉴스들을 수집 분석하여 주가와 어떠한 관련이 있는지 분석하였다. 뉴스는 그 속성상 특정한 양식을 갖지 않는 비정형 텍스트로 구성되어있다. 이러한 뉴스 컨텐츠를 분석하기 위해 오피니언 마이닝이라는 빅데이터 감성분석 기법을 적용하였고, 이를 통해 주가지수의 등락을 예측하는 지능형 투자의사결정 모형을 제시하였다. 그리고, 모형의 유효성을 검증하기 위하여 마이닝 결과와 주가지수 등락 간의 관계를 통계 분석하였다. 그 결과 뉴스 컨텐츠의 감성분석 결과값과 주가지수 등락과는 유의한 관계를 가지고 있었으며, 좀 더 세부적으로는 주식시장 개장 전 뉴스들과 주가지수의 등락과의 관계 또한 통계적으로 유의하여, 뉴스의 감성분석 결과를 이용해 주가지수의 변동성 예측이 가능할 것으로 판단되었다. 이렇게 도출된 투자의사결정 모형은 여러 유형의 뉴스 중에서 시황 전망 해외 뉴스가 주가지수 변동을 가장 잘 예측하는 것으로 나타났고 로지스틱 회귀분석결과 분류정확도는 주가하락 시 70.0%, 주가상승 시 78.8%이며 전체평균은 74.6%로 나타났다.

연관규칙 마이닝을 활용한 뉴스기사 키워드의 연관성 탐사 (Discovering News Keyword Associations Using Association Rule Mining)

  • 김한준;장재영
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권6호
    • /
    • pp.63-71
    • /
    • 2011
  • 현재 대부분의 웹포털 사이트는 인기도 또는 중요도가 높은 키워드를 제공하는 서비스가 제공되고 있는데, 구체적으로 태그 클라우드 형태와 연관 검색 서비스와 같은 사용자 친화형 서비스를 지원하고 있다. 하지만 일반적으로 뉴스기사는 날짜와 분야별로 기사들이 분류되어 있기에, 사용자는 카테고리별로 나누어진 기사를 읽을 수만 있을 뿐 그 기사와 연관된 다른 기사를 쉽게 찾아보지는 못한 실정이다. 또한 연관 검색어 서비스도 사용자가 검색한 입력내용을 기반으로 연관성 정도를 분석하기에 충분한 객관성을 보장하지 못하고 있다. 본 논문에서는 기존의 태그 클라우드 방식에서 좀 더 나아가 축적된 뉴스 기사로 부터 검색 키워드와 밀접히 연관된 키워드를 추출하여 제공하는 기사 검색 방식을 제안한다. 제안 기법은 기본적으로 연관규칙 마이닝을 이용하여 키워드 연관성을 추출하게 되며, 뉴스기사 특성을 반영하여 문장 내부에 존재하는 키워드에 한정하여 연관성을 추출한다. 연관된 키워드 집합을 이용하여 키워드와 가장 밀접한 기사를 검색할 뿐만 아니라, 연관 키워드간의 관계성을 보여줌으로써 뉴스 기사들 속에 숨겨진 연관정보의 탐색을 가능하게 한다.

감성분석과 토픽모델링을 활용한 농촌태양광 관련 이슈 연구 : 언론 기사와 블로그 포스트 비교 (Application of Sentiment Analysis and Topic Modeling on Rural Solar PV Issues : Comparison of News Articles and Blog Posts)

  • 기재홍;안승혁
    • 디지털융복합연구
    • /
    • 제18권9호
    • /
    • pp.17-27
    • /
    • 2020
  • 사회적 의제 설정 영향력을 지닌 미디어인 언론 기사와 블로그 포스트에서 농촌태양광이 어떻게 다루어지고 있는지 분석하기 위해 텍스트 마이닝 방법을 활용하였다. 농촌태양광을 키워드로 웹스크래핑을 통해 기사와 블로그 포스트의 텍스트 자료를 수집하고, 이에 대해 감성분석과 토픽모델 기법을 적용하여 연구를 수행했다. 감성분석 결과 농촌태양광에 대한 텍스트에서 두 매체 모두 긍정적인 입장을 가지는 비율이 높았는데, 블로그의 경우 기사에 비해 부정적인 내용을 담은 텍스트의 비중이 훨씬 낮은 것을 확인할 수 있었다. 그리고 토픽모델링 결과로 긍정 기사는 정부의 보급계획 관련 토픽들의 비중이 컸고, 부정 기사는 다양한 토픽들의 비중이 고르게 분포하였다. 블로그는 긍정 포스트의 경우 농촌 지역 설치 관련 토픽들이, 부정 포스트는 환경 피해 관련 토픽들이 가장 큰 부분을 차지했다. 기존에 별개로 이루어지던 감성분석과 토픽모델링을 결합하는 연구 방식을 제시함으로써 농촌태양광에 대한 이슈를 효과적으로 파악할 수 있었다.

간호간병통합서비스 관련 온라인 기사 및 소셜미디어 빅데이터의 의미연결망 분석 (Semantic Network Analysis of Online News and Social Media Text Related to Comprehensive Nursing Care Service)

  • 김민지;최모나;염유식
    • 대한간호학회지
    • /
    • 제47권6호
    • /
    • pp.806-816
    • /
    • 2017
  • Purpose: As comprehensive nursing care service has gradually expanded, it has become necessary to explore the various opinions about it. The purpose of this study is to explore the large amount of text data regarding comprehensive nursing care service extracted from online news and social media by applying a semantic network analysis. Methods: The web pages of the Korean Nurses Association (KNA) News, major daily newspapers, and Twitter were crawled by searching the keyword 'comprehensive nursing care service' using Python. A morphological analysis was performed using KoNLPy. Nodes on a 'comprehensive nursing care service' cluster were selected, and frequency, edge weight, and degree centrality were calculated and visualized with Gephi for the semantic network. Results: A total of 536 news pages and 464 tweets were analyzed. In the KNA News and major daily newspapers, 'nursing workforce' and 'nursing service' were highly rated in frequency, edge weight, and degree centrality. On Twitter, the most frequent nodes were 'National Health Insurance Service' and 'comprehensive nursing care service hospital.' The nodes with the highest edge weight were 'national health insurance,' 'wards without caregiver presence,' and 'caregiving costs.' 'National Health Insurance Service' was highest in degree centrality. Conclusion: This study provides an example of how to use atypical big data for a nursing issue through semantic network analysis to explore diverse perspectives surrounding the nursing community through various media sources. Applying semantic network analysis to online big data to gather information regarding various nursing issues would help to explore opinions for formulating and implementing nursing policies.

HyTime 문서의 객체지향 모델링 (An Object-Oriented Modeling of HyTime Documents)

  • 강지훈;조영환;박천수
    • 정보교육학회논문지
    • /
    • 제4권2호
    • /
    • pp.223-231
    • /
    • 2001
  • 하이퍼미디어 문서들은 문서의 구조 정보를 포함하고 있다. 이러한 구조 정보를 이용하여 하이퍼미디어 문서를 저장, 검색하기 위한 모델에 관한 연구가 있어 왔다. 그러나 실제 문서의 상연을 지원하기 위한 모델의 제시가 미비한 실정이다. 본 논문에서는 HyTime 하이퍼미디어 문서를 문서의 구조정보를 이용하여 객체지향 모델링을 하여 상연을 효율적으로 수행할 수 있는 방안을 제안한다. 이를 위하여 HyTime의 응용으로 사용자의 요구에 맞게 뉴스를 제공하는 주문형 뉴스 서비스를 지원하는 시스템을 고려한다. 본 논문에서 제안한 모델링은 주문형 뉴스 서비스뿐만 아니라, 멀티미디어를 지원하는 주문형 웹 기반 교육, 디지털 도서관 등의 하이퍼미디어 응용 분야에서 활용될 수 있을 것이다.

  • PDF

동적 색인 스토리지 및 통합 검색 서비스 개발 (Dynamic index storage and integrated searching service development)

  • 이왕우;이석형;최호섭;윤화묵;김종환;허윤영
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2007년도 추계 종합학술대회 논문집
    • /
    • pp.346-349
    • /
    • 2007
  • 본 논문은 웹뉴스 및 리뷰 검색 서비스를 위해 만든 통합 검색 시스템을 소개한다. 검색 서비스를 위한 데이터 수집을 위해서 특정 사이트에서 수집한 뉴스와 리뷰 문서로부터 제목, 날짜, 저자, 본문처럼 특정한 영역의 데이터만 추출하는 XSLTRobot을 만들었다. XSLTRobot은 원하는 부분의 데이터만 추출하기 위해 XSLT 기술을 이용한다. 여러가지 검색 데이터 형식에 적합한 통합 검색엔진과 통합 검색엔진의 스토리지 모듈중 하나인 동적 색인 저장소(Dynamic Index Storage)를 소개한다. 동적 색인 저장소는 뉴스 데이터처럼 색인의 업데이트가 빨라야 하는 환경에 이용된다. 본 논문에서 제시하는 동적 색인 저장소는 대량의 실시간 업데이트 문서를 처리하지 않기 때문에 검색성능에 초점을 맞춰서 설계하였다.

  • PDF

문서 클러스터링을 이용한 문맥 광고 시스템 (Contextual Advertisement System based on Document Clustering)

  • 이동광;강인호;안동언
    • 정보처리학회논문지B
    • /
    • 제15B권1호
    • /
    • pp.73-80
    • /
    • 2008
  • 본 연구에서는 문서 클러스터링을 이용하여 동음 이의어와 핵심단어 선정 실패로 인해 발생하는 자동 광고 시스템의 오류를 해결하는 광고 키워드 추출방식을 제안한다. 먼저 대규모 뉴스기사를 대상으로 유사한 내용을 가지며 동일한 광고 키워드와 연관이 있는 기사들을 자동으로 분류하여 광고 키워드에 대한 문맥 정보를 구축한다. 또한 광고 대상물에 대한 광고주의 요약 정보나 광고 대상 웹페이지를 분석하여 광고 키워드에 대한 문맥 정보를 추출하는 방식을 보인다. 이렇게 구축된 문서 분류와 광고 키워드용 문맥 정보를 이용하여 광고 대상 문서가 속한 문서 분류를 추정하여 단어들의 의미적인 애매성을 해결하고, 추정한 문서 분류와 관련 있으면서 문맥적으로 중요성을 가지는 핵심 단어들을 선정하여 광고 키워드를 추출한다. 상용 광고 시스템과의 비교 분석 결과 신문 기사나 일반 블로그를 대상으로 최소 21%의 성능 향상을 얻었다.