• Title/Summary/Keyword: new strain

Search Result 2,135, Processing Time 0.034 seconds

Biosurfactant as a microbial pesticide

  • Lee, Baek-Seok;Choi, Sung-Won;Choi, Ki-Hyun;Lee, Jae-Ho;Kim, Eun-Ki
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.40-44
    • /
    • 2003
  • Soil-borne infectious disease including Pythium aphanidermatum and Rhizoctonia solani causes severe damage to plants, such as cucumber. This soil-borne infectious disease was not controlled effectively by chemical pesticide. Since these diseases spread through the soil, chemical agents are usually ineffective. Instead, biological control, including antagonistic microbe can be used as a preferred control method. An efficient method was developed to select an antagonistic strain to be used as a biological control agent strain. In this new method, surface tension reduction potential of an isolate was included in the ‘decision factor’ in addition to the other factors, such as growth rate, and pathogen inhibition rate. Considering these 3 decision factors by a statistical method, an isolate from soil was selected and was identified as Bacillus sp. GB16. In the pot test, this strain showed the best performance among the isolated strains. The lowest disease incidence rate and fastest seed growth was observed when Bacillus sp. GB16 was used. Therefore this strain was considered as plant growth promoting rhizobacteria (PGPR). The action of surface tension reducing component was deduced as the enhancement of wetting, spreading, and residing of antagonistic strain in the rhizosphere. This result showed that new selection method was significantly effective in selecting the best antagonistic strain for biological control of soil-borne infectious plant pathogen. The antifungal substances against P. aphanidermatum and R. solani were partially purified from the culture filtrates of Bacillus sp. GB16. In this study, lipopeptide possessing antifungal activity was isolated from Bacillus sp. GB16 cultures by various purification procedures and was identified as a surfactin-like lipopeptide based on the Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), high performance liquid chromatography mass spectroscopy (HPLC-MS), and quadrupole time-of-flight (Q-TOF) ESI-MS/MS data. The lipopeptide, named GB16-BS, completely inhibited the growth of Pythium aphanidermatum, Rhizoctonia solani, Penicillium sp., and Botrytis cineria at concentrations of 10 and 50 mg/L, respectively. A novel method to prevent the foaming and to provide oxygen was developed. During the production of surface active agent, such as lipopeptide (surfactin), large amount of foam was produced by aeration. This resulted in the carryover of cells to the outside of the fermentor, which leads to the significant loss of cells. Instead of using cell-toxic antifoaming agents, low amount of hydrogen peroxide was added. Catalase produced by cells converted hydrogen peroxide into oxygen and water. Also addition of corn oil as an oxygen vector as well as antifoaming agent was attempted. In addition, Ca-stearate, a metal soap, was added to enhance the antifoam activity of com oil. These methods could prevent the foaming significantly and maintained high dissolved oxygen in spite of lower aeration and agitation. Using these methods, high cell density, could be achieved with increased lipopeptide productivity. In conclusion to produce an effective biological control agent for soil-borne infectious disease, following strategies were attempted i) effective screening of antagonist by including surface tension as an important decision factor ii) identification of antifungal compound produced from the isolated strain iii) novel oxygenation by $H_2O_2-catalase$ with vegetable oil for antifungal lipopeptide production.

  • PDF

Symbiobacterium toebii Sp. nov., Commensal Thermophile Isolated from Korean Compost

  • Sung, Moon-Hee;Bae, Jin-Woo;Kim, Joong-Jae;Kim, Kwang;Song, Jae-Jun;Rhee, Sung-Keun;Jeon, Che-Ok;Choi, Yoon-Ho;Hong, Seung-Pyo;Lee, Seung-Goo;Ha, Jae-Suk;Kang, Gwan-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.1013-1017
    • /
    • 2003
  • A thermophilic nonspore-forming rod isolated from hay compost in Korea was subjected to a taxonomic study. The microorganism, designated as $SC-1^T$, was identified as a nitrate-reducing and nonmotile bacterium. Although the strain was negatively Gram-stained, a KOH test showed that the strain $SC-1^T$ belonged to a Gram-positive species. Growth was observed between 45 and $70^{\circ}C$. The optimal growth temperature and pH were $60^{\circ}C$ and pH 7.5, respectively. The G+C content of the genomic DNA was 65 mol% and the major quinone types were MK-6 and MK-7. A phylogenetic analysis based on 16S rDNA sequences revealed that the strain $SC-1^T$ was most closely related to Symbiobacterium thermophilum. However, the level of DNA-DNA relatedness between strain $SC-1^T$ and the type strain for Symbiobacterium thermophilum was approximately 30%. Accordingly, on the basis of the phenotypic traits and molecular systematic data, the strain $SC-1^T$ would appear to represent a new species within the genus Symbiobacterium. The type strain for the new species is named $SC-1^T$ ($=KCTC\;0307BP^T;\;DSM15906^T$).

Properties of Strength and Stress-Strain of Recycled-Plastic Polymer Concrete (폐플라스틱 재활용 폴리머콘크리트의 강도와 응력-변형률 특성)

  • Jo Byung-Wan;Koo Jakap;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.329-334
    • /
    • 2005
  • The use of Polymer Concrete (PC) is growing very rapidly in many structural and construction applications such as box culverts, hazardous waste containers, trench lines, floor drains and the repair and overlay of damaged cement concrete surfaces in pavements, bridges, etc. However, PC has a defect economically because resin which be used for binder is expensive. Therefore the latest research is being progressed to replace existing resin with new resin which can reduce the high cost. Here, Polymer concrete using the recycled PET(polyethylene terephthalate) has some merits such as decrease of environmental destruction, decrease of environmental pollution and development of new construction materials. The variables of this study are amount of resin, curing condition and maximum size of coarse aggregate to find out mechanic properties of this. Stress-strain curve was obtained using MTS equipment by strain control. The results indicated that modulus of elasticity was increased gradually in an ascending branch of curve, as an increase of resin content. Compressive strength was the highest for resin content of $13\%$. And Compressive strength was increased as maximum size of coarse aggregate increases. The strain at maximum stress increases with an increase of resin content and size of coarse aggregate. For the descending branch of stress-strain curve the brittle fracture was decreased when it was cured at the room temperature compared to high temperature.

Ultrasound Breast Elastographic Evaluation of Mass-Forming Ductal Carcinoma-in-situ with Histological Correlation - New Findings for a Toothpaste Sign

  • Leong, Lester Chee Hao;Sim, Llewellyn Shao-Jen;Jara-Lazaro, Ana Richelia;Tan, Puay Hoon
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2673-2678
    • /
    • 2016
  • Background: It is unclear as to whether the size ratio elastographic technique is useful for assessing ultrasound-detected ductal carcinoma-in-situ (DCIS) masses since they commonly lack a significant desmoplastic reaction. The objectives of this study were to determine the accuracy of this elastographic technique in DCIS and examine if there was any histopathological correlation with the grey-scale strain patterns. Materials and Methods: Female patients referred to the radiology department for image-guided breast biopsy were prospectively evaluated by ultrasound elastography prior to biopsy. Histological diagnosis was the gold standard. An elastographic size ratio of more than 1.1 was considered malignant. Elastographic strain patterns were assessed for correlation with the DCIS histological architectural patterns and nuclear grade. Results: There were 30 DCIS cases. Elastographic sensitivity for detection of malignancy was 86.7% (26/30). 10/30 (33.3%) DCIS masses demonstrated predominantly white elastographic strain patterns while 20/30 (66.7%) were predominantly black. There were 3 (10.0%) DCIS masses that showed had a co-existent bull's-eye sign and 7 (23.3%) other masses had a co-existent toothpaste sign, a strain pattern that has never been reported in the literature. Four out of 4/5 comedo DCIS showed a predominantly white strain pattern (p=0.031) while 6/7 cases with the toothpaste sign were papillary DCIS (p=0.031). There was no relationship between the strain pattern and the DCIS nuclear grade. Conclusions: The size ratio elastographic technique was found to be very sensitive for ultrasound-detected DCIS masses. While the elastographic grey-scale strain pattern should not be used for diagnostic purposes, it correlated well with the DCIS architecture.

A Cellulolytic and Xylanolytic Enzyme Complex from an Alkalothermoanaerobacterium, Tepidimicrobium xylanilyticum BT14

  • Phitsuwan, Paripok;Tachaapaikoon, Chakrit;Kosugi, Akihiko;Mori, Yutaka;Kyu, Khin Lay;Ratanakhanokchai, Khanok
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.5
    • /
    • pp.893-903
    • /
    • 2010
  • A cellulolytic and xylanolytic enzyme complex-producing alkalothermoanaerobacterium strain, Tepidimicrobium xylanilyticum BT14, is described. The cell was Grampositive, rod-shaped, and endospore-forming. Based on 16S rRNA gene analysis and various lines of biochemical and physiological properties, the strain BT14 is a new member of the genus Tepidimicrobium. The strain BT14 cells had the ability to bind to Avicel, xylan, and corn hull. The pH and temperature optima for growth were 9.0 and $60^{\circ}C$, respectively. The strain BT14 was able to use a variety of carbon sources. When the bacterium was grown on corn hulls under an anaerobic condition, a cellulolytic and xylanolytic enzyme complex was produced. Crude enzyme containing cellulase and xylanase of the strain BT14 was active in broad ranges of pH and temperature. The optimum conditions for cellulase and xylanase activities were pH 8.0 and 9.0 at $60^{\circ}C$, respectively. The crude enzyme had the ability to bind to Avicel and xylan. The analysis of native-PAGE and native-zymograms indicated the cellulosebinding protein showing both cellulase and xylanase activities, whereas SDS-PAGE zymograms showed 4 bands of cellulases and 5 bands of xylanases. Evidence of a cohesinlike amino acid sequence seemed to indicate that the protein complex shared a direct relationship with the cellulosome of Clostridium thermocellum. The crude enzyme from the strain BT14 showed effective degradation of plant biomass. When grown on corn hulls at pH 9.0 and $60^{\circ}C$ under anaerobic conditions, the strain BT14 produced ethanol and acetate as the main fermentation products.

Form I Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase from CO2-Fixing Chemoautotrophic bacterium, Aeromonas sp. strain JS-1: Purification and Properties (CO2를 고정하는 화학독립영양미생물인 Aeromonas sp. strain JS-1의 Form I Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase 정제 및 특성 파악)

  • Na, Suk-Hyun;Bae, Sang-Ok;Jung, Soo-Jung;Chung, Seon-Yong
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.559-564
    • /
    • 2010
  • A new hydrogen-oxidizing bacterium, Aeromonas sp. strain JS-1, that can fix $CO_2$ via the reductive pentose phosphate cycle (Calvin-Benson cycle) under chemoautotrophic conditions but not photoautotrophic conditions was isolated from fresh water. Strain JS-1 showed considerable $CO_2$ fixation ability during continuous cultivation even at high $CO_2$ concentration. Strain JS-1 used $H_2$ and $CO_2$ fixation as energy and carbon sources, respectively. Carbon dioxide fixation is carried out through the Calvin-Benson cycle, in which ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is the key enzyme. Hydrogen-oxidizing chemoautotrophic Aeromonas sp. strain JS-1 exhibited remarkedly strong RubisCO [EC 4.1.1.39] activity. RubisCO was purified as an $L_8S_8$-type hexadecamer with molecular mass of 560 kDa by gel filtration. The enzyme consisted of two different subunits eight large (56 kDa) and eight small (15 kDa), as demonstrated by SDS-PAGE. The specific activity of the purified enzyme was about 3.31 unit/mg and stable up to $45^{\circ}C$. The $K_m$ values for RuBP, $CO_2$, and $Mg^{2+}$ were estimated to be 0.25 mM, 5.2 mM and 0.91 mM, respectively.

Physiological and Phylogenetic Analysis of Burkholderia sp. HY1 Capable of Aniline Degradation

  • Kahng, Hyung-Yeel;Jerome J. Kukor;Oh, Kye-Heon
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.5
    • /
    • pp.643-650
    • /
    • 2000
  • A new aniline-utilizing microorganism, strain HY1 obtained from an orchard soil, was characterized by using the BIOLOG system, an analysis of the total cellular fatty acids, and a 16S rDNA sequence. Strain HY1 was identified as a Burkholderia species, and was designated Burkholderia sp. HY1. GC and HPLC analyses revealed that Burkholderia sp. HY1 was able to degrade aniline to produce catechol, which was subsequently converted to cis,cis-muconic acid through an ortho-ring fission pathway under aerobic conditions. Strain HY1 exhibited a drastic reduction in the rate of aniline degradation when glucose was added to the aniline media. However, the addition of peptone or nitrate to the aniline media dramatically accelerated the rate of aniline degradation. A fatty acid analysis showed that strain HY1 was able to produce lipids 16:0 2OH, and 11 methyl 18:1 ${\omega}7c$ approximately 3.7-, 2.2-, and 6-fold more, respectively, when grown on aniline media than when grown on TSA. An analysison the alignment of a 1,435 bp fragment. A phylogenetic analysis of the 16S rDNA sequence based on a 1,420 bp multi-alignment sowed of the 16s rDNA sequence revealed that strain HY1 was very closely related to Burkholderia graminis with 95% similarity based that strain HY1 was placed among three major clonal types of $\beta$-Proteobacteria, including Burkholderia graminis, Burkholderia phenazinium, and Burkholderia glathei. The sequence GAT(C or G)${\b{G}}$, which is highly conserved in several locations in the 16S rDNA gene among the major clonal type strains of $\beta$-Proteobacteria, was frequently replaced with GAT(C or G)${\b{A}}$ in the 16S rDNA sequence from strain HY1.

  • PDF

Isolation and Characterization of Five Isolates of Tetraselmis sp. with Rapid Growth Rates in Low Temperatures (저온 생장성이 우수한 분리 미세조류 Tetraselmis sp. 5개주의 생장 패턴 및 지방산 조성 분석)

  • Park, Hanwool;Hoh, Donghee;Shin, Dong-Woo;Kim, Z-Hun;Hong, Seong-Joo;Lim, Sang-Min;Lee, Choul-Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.23-28
    • /
    • 2019
  • For successful microalgal biodiesel production, the strain should be selected carefully. Fast growth rate and high fatty acid contents are desired traits for algal biodiesel production. In ocean cultivation of microalgae, seawater temperature slowly changes over seasons, and rotating algal strains in accordance with their optimal temperature could improve overall productivity. Additionally, use of indigenous strain is preferred to alleviate potential impacts on the environment. In this study, five strains of Tetraselmis sp. from nearshore of Youngheung Island, Incheon, Korea, were isolated during winter and characterized for their growth patterns and fatty acid compositions in the low temperatures ($5-15^{\circ}C$). The five strains showed various characteristics in optimal growth temperature, fatty acid contents, and compositions. Compared with a strain of Tetraselmis sp., isolated from Ganghwa island in a previous study, a rapid-growing strain with 237% higher biomass productivity and an oleaginous strain with twice higher fatty acid contents at $10^{\circ}C$ were isolated. The oleaginous Tetraselmis strain showed the highest fatty acid productivity among the strains, having 438% higher productivity than the previous strain. Using the new isolates in the seasons with low seawater temperature would improve microalgal fatty acid productivity in ocean cultivation.

Ab-Initio Study of the Schottky Barrier in Two-Dimensional Lateral Heterostructures by Using Strain Engineering (인장변형에 따른 이차원 수평접합 쇼트키 장벽 제일원리 연구)

  • Hwang, Hwihyeon;Lee, Jaekwang
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1288-1292
    • /
    • 2018
  • Using density functional theory calculations, we study the Schottky barrier (SB) change in a two-dimensional (2D) lateral heterostructure consisting of semiconducting $2H-MoS_2$ and the ferromagnetic metal $2H-VS_2$ by applying a uniaxial tensile strain from 0% to 10%. We find that the SB for holes is much smaller than that for electrons and that SB height decreases monotonically under increasing tensile strain. In particular, we find that a critical strain where the spin-up SB for holes is abruptly reduced to zero exists near a strain of 8%, implying that only the spin-up holes are allowed to flow through the $MoS_2-VS_2$ lateral heterostructure. Our results provide fundamental information and can be utilized to guide the design of 2D lateral heterostructure-based novel rectifying devices by using strain engineering.