• Title/Summary/Keyword: new strain

Search Result 2,135, Processing Time 0.037 seconds

A Numerical Approach to Indentation Techniques for Thin-film Property Evaluation (박막 물성평가 압입시험의 수치접근법)

  • Lee, Jin-Haeng;Yu, Han-Suk;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.313-321
    • /
    • 2007
  • In this work, the prior indentation theory for a bulk material is extended to an indentation theory for evaluation of thin-film material properties. We first select the optimal data acquisition location, where the strain gradient is the least and the effect of friction is negligible. A new numerical approach to the thin-film indentation technique is then proposed by examining the finite element solutions at the optimal point. With this new approach, from the load-depth curve, we obtain the values of Young's modulus, yield strength, strain-hardening exponent. The average errors of those values are less than 3, 5, 8% respectively.

Design of Initial Billet using the Artificial Neural Network for a Hot Forged Product (신경망을 이용한 열간단조품의 초기 소재 설계)

  • 김동진;김벙민;최재찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.198-203
    • /
    • 1995
  • In the paper, we have proposed a new technique to detemine the initial billet for the forged products using a function approximation in neural network. A three-layer neural network is used and a back propagation algorithm is employed totrain the network. An optimal billet which satisfied the forming limitation, minimum of incomplete filling in the die cavity, load and energyas well as more uniform distribution of effective strain, is determined by applying the ability of function approximation of te neural network. The amount of incomplete filling in the die, load and forming energyas well as effective strain are measured by the rigid-plastic finite element method. The new technique is applied tofind the optimal billet size for the axisymmetric rib-web product in hot forging. This would reduce the number of finite element simulation for determing the optimal billet of forging products, further it is usefully adapted to physical modeling for the forging design.

  • PDF

Isolation and Identification of a Pentachloronitrobenzene(PCNB) Degrading Bacterium Alcaligenes xylosoxidans PCNB-2 from Agricultural Soil

  • Shin, Sung-Kyu;Kim, Jang-Eok;Kwon, Gi-Seok;Kwon, Jin-Wook;Oh, Eun-Taex;So, Jae-Seong;Koh, Sung-Cheol
    • Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.165-168
    • /
    • 2003
  • We report a new PCNB-degrading strain (PCNB-2) that is able to utilize and grow on PCNB (100 ppm) as a sole carbon source. This strain was identified as Alcaligenes xylosoxidans based upon 16S rDNA sequence analysis, API 20 NE tests and cell membrane lipid analysis. The new PCNB degrader Alcaligenes xylosoxidans PCNB-2 could find use in bioremediation of PCNB, which is environmentally persistent.

Enhanced Spherical Indentation Techniques for Property Evaluation (향상된 구형 압입 물성평가법)

  • Lee, Hyung-Yil;Lee, Jin-Haeng
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.461-471
    • /
    • 2007
  • In this work, indentation theory of Lee $et al.^{(1)}$ for 6% indentation of indenter diameter is extended to an indentation theory for 20% indentation. For shallow indentation, the effect of friction on load-depth curve is negligible, but different materials can show nearly identical load-depth curves. On the basis of this observation, a new numerical approach to deep indentation techniques is proposed by examining the finite element solutions. With this new approach, from the load-depth curve, we obtain stress-strain curve and the values of Young's modulus, yield strength and strain-hardening exponent with an average error of less than 3%.

Description of reversed yielding in thin hollow discs subject to external pressure

  • Alexandrov, Sergei E.;Pirumov, Alexander R.;Jeng, Yeau-Ren
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.661-676
    • /
    • 2016
  • This paper presents an elastic/plastic model that neglects strain hardening during loading, but accounts for the Bauschinger effect. These mathematical features of the model represent reasonably well the actual behavior of several materials such as high strength steels. Previous attempts to describe the behavior of this kind of materials have been restricted to a class of boundary value problems in which the state of stress in the plastic region is completely controlled by the yield stress in tension or torsion. In particular, the yield stress is supposed to be constant during loading and the forward plastic strain reduces the yield stress to be used to describe reversed yielding. The new model generalizes this approach on plane stress problems assuming that the material obeys the von Mises yield criterion during loading. Then, the model is adopted to describe reversed yielding in thin hollow discs subject to external pressure.

New Current Measurement Device in Resistance Spot Welding by Using the Ring Deformation (링의 변형을 이용한 저항용접 전류측정장치의 개발)

  • Park, S.W.;Na, S.J.
    • Proceedings of the KWS Conference
    • /
    • 1990.11a
    • /
    • pp.82-86
    • /
    • 1990
  • A new method was investigated to measure the high current in resistance welding processes. A measuring unit was developed by using a strain gage attached on the outer surface of a steel ring. The steel ring was placed around a section of the secondary loop of the welding machine, and was deformed by electro-magnetic forces induced by the high welding current. The circumferential constituent of the ring deformation was then used to obtain a signal voltage proportional to the secondary welding current. The strain gage signal of ring deformation is enough to determine the welding current in resistance spot welding, especially when welded with direct current.

  • PDF

Biodegradation of and comparison of adaptability to dectergents (미생물에 의한 계면활성제의 분해능과 적응력의 비교)

  • 이혜주;홍순우
    • Korean Journal of Microbiology
    • /
    • v.18 no.4
    • /
    • pp.155-160
    • /
    • 1980
  • Microorgansims utilizing anionic detergent as their carbon and sulfur sources were isolated from soils and sewages. Alkyl benzene sulfonate (Hiti) and sodium dodecyl sulfonate (SDS) were the detergent compound tested. Three of these isolated microorganisms were identified as Pseudomonas spp. and the others asKlbsiella, Enterobacter and Acinetobacter. Biodegradation rate of the detergents and growth rate of Acinetobacter Strain II-8, Pseudomonas strain H-3-1 and 554 among six isolated microorganisms were investigated with colorimetric, warburg manometric, and ultraviolet absorption analyses. By performance of 4 serial successive tranfer to new culture broth for the purpose of adaptation method, ABS and SDS could be degraded to far more than 40%-60% and 70%-75%, respectively. However the employment of nonadaptation method, ABS and SDS were degraded to 30%-45% and 45%-65%, respectively. In another words, detergents degradation ability was increased to a certain extent by successive transfer to the new minimal media. We would conclude that the development of adaptation was effective in the removal of recalcitrant compounds.

  • PDF

Zygotorulaspora cornina sp. nov. and Zygotorulaspora smilacis sp. nov., Two Novel Ascomycetous Yeast Species Isolated from Plant Flowers and Fruits

  • Ahn, Chorong;Kim, Minkyeong;Kim, Changmu
    • Mycobiology
    • /
    • v.49 no.5
    • /
    • pp.521-526
    • /
    • 2021
  • Three isolates belonging to the ascomycetous genus Zygotorulaspora were obtained from the fruits of Cornus officinalis and Smilax china, and flowers of Dendranthema zawadskii var. latilobum in Gongju-si, Korea. Phylogenetic Analyses of the LSU D1/D2 domain and ITS region sequences supported the recognition of two new species: Zygotorulaspora cornina sp. nov. (type strain NIBRFGC000500475 = KACC93346PPP) and Zygotorulaspora smilacis sp. nov. (type strain NIBRFGC000500476 = KACC93347PPP). The two novel species revealed no growth on D-Galactose, unlike the other six species in the genus Zygotorulaspora. They are distinguished from each other by their phylogenetic differences and phenotypic characteristics such as assimilation of xylitol, 5-keto-D-gluconate, and ethanol. All species in the genus Zygotorulaspora including the two novel species have phenotypic traits of genus Zygotorulaspora: asci are persistent, sucrose and raffinose are assimilated, and m-inositol is not required for growth, and they are mainly associated with plants.

Combined effects of end-shortening strain, lateral pressure load and initial imperfection on ultimate strength of laminates: nonlinear plate theory

  • Ghannadpour, S.A.M.;Barvaj, A. Kurkaani
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.245-259
    • /
    • 2019
  • The present study aims to investigate the ultimate strength and geometric nonlinear behavior of composite plates containing initial imperfection subjected to combined end-shortening strain and lateral pressure loading by using a semi-analytical method. In this study, the first order shear deformation plate theory is considered with the assumption of large deflections. Regarding in-plane boundary conditions, two adjacent edges of the laminates are completely held while the two others can move straightly. The formulations are based on the concept of the principle of minimum potential energy and Newton-Raphson technique is employed to solve the nonlinear set of algebraic equations. In addition, Hashin failure criteria are selected to predict the failures. Further, two distinct models are assumed to reduce the mechanical properties of the failure location, complete ply degradation model, and ply region degradation model. Degrading the material properties is assumed to be instantaneous. Finally, laminates having a wide range of thicknesses and initial geometric imperfections with different intensities of pressure load are analyzed and discuss how the ultimate strength of the plates changes.

Glucose Transport through N-Acetylgalactosamine Phosphotransferase System in Escherichia coli C Strain

  • Kim, Hyun Ju;Jeong, Haeyoung;Lee, Sang Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1047-1053
    • /
    • 2022
  • When ptsG, a glucose-specific phosphotransferase system (PTS) component, is deleted in Escherichia coli, growth can be severely poor because of the lack of efficient glucose transport. We discovered a new PTS transport system that could transport glucose through the growth-coupled experimental evolution of ptsG-deficient E. coli C strain under anaerobic conditions. Genome sequencing revealed mutations in agaR, which encodes a repressor of N-acetylgalactosamine (Aga) PTS expression in evolved progeny strains. RT-qPCR analysis showed that the expression of Aga PTS gene increased because of the loss-of-function of agaR. We confirmed the efficient Aga PTS-mediated glucose uptake by genetic complementation and anaerobic fermentation. We discussed the discovery of new glucose transporter in terms of different genetic backgrounds of E. coli strains, and the relationship between the pattern of mixed-acids fermentation and glucose transport rate.