• Title/Summary/Keyword: new smelting process

Search Result 16, Processing Time 0.021 seconds

Post Process Associated with the Electrochemical Reduction Process - Smelting of a Metal Product and Solidification of a Molten Salt (전해환원공정 관련 후처리공정 - 금속전환체 Smelting 및 용융염 고화)

  • 허진목;정명수;이원경;조수행;서중석;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.278-284
    • /
    • 2004
  • The processes for the smelting of a metal product and the solidification of a molten salt were developed respectively to treat the products from the electrochemical reduction process. The method for the separation of a metal product in a magnesia container from the residual. salt and consequent smelting of it to a metal ingot by the multi step heating in vacuum was proposed. The new concept using a dual vessel and a salt valve was also suggested for the solidification of a molten salt into a regular size and shape which is suitable for the transport and measurement. The results obtained in the study will be applied to the design of the hot cell demonstration system of the Advanced Spent Fuel Conditioning Process of KAERI.

  • PDF

Current Status of Titanium Smelting Technology for Powder Metallurgy (분말야금을 위한 타이타늄 제련기술 현황)

  • Sohn, Ho-Sang
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.164-172
    • /
    • 2021
  • Titanium is the ninth most abundant element in the Earth's crust and is the fourth most abundant structural metal after aluminum, iron, and magnesium. It exhibits a higher specific strength than steel along with an excellent corrosion resistance, highlighting the promising potential of titanium as a structural metal. However, titanium is difficult to extract from its ore and is classified as a rare metal, despite its abundance. Therefore, the production of titanium is exceedingly low compared to that of common metals. Titanium is conventionally produced as a sponge by the Kroll process. For powder metallurgy (PM), hydrogenation-dehydrogenation (HDH) of the titanium sponge or gas atomization of the titanium bulk is required. Therefore, numerous studies have been conducted on smelting, which replaces the Kroll process and produces powder that can be used directly for PM. In this review, the Kroll process and new smelting technologies of titanium for PM, such as metallothermic, electrolytic, and hydrogen reduction of TiCl4 and TiO2 are discussed.

The change of air lead concentrations in litharge making and smelting industries (일부 제련 및 리사지 사업장에서 공기중 납 노출농도의 변화)

  • Choi, Jae-Wook;Kim, Nam-Soo;Cho, Kwang-Sung;Ham, Jung-O;Lee, Byung-Kook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.1
    • /
    • pp.10-18
    • /
    • 2010
  • To provide necessary information for future environmental monitoring of smelting and litharge making industries in Korea, environmental monitoring dataset of air lead concentration of 4 lead industries(1 primary smelting, 2 secondary smelting and 1 litharge making industry) were analyzed from 1994 to 2007. Data were compared using geometric mean and standard deviation with minimum and maximum values according to year of measurement, type of lead industries and type of operation of lead industries. The geometric mean and standard deviation of air concentration for a total of 1140 samples in all lead industries for overall 14 years were 70.7${\mu}g/m^3$ and 5.51 with minimum of 1${\mu}g/m^3$ and maximum of 9,185 ${\mu}g/m^3$. The overall geometric means of air concentration were above the permissible exposure levels(PEL) until year of 2001 and thereafter they were remained at the level of half of PEL. The geometric means of primary smelting, secondary smelting and litharge making industry for overall 14 years were 21.7${\mu}g/m^3$(number of samples: 353), 82.5${\mu}g/m^3$(number of samples: 357) and 164.2 ${\mu}g/m^3$(number of samples: 430) respectively. In primary smelting industry, the highest geometric mean air concentration was 35.4 ${\mu}g/m^3$ in the secondary smelting operation; followed by casting operation (24.9 ${\mu}g/m^3$) and melting operation (14.9 ${\mu}g/m^3$), respectively. On the other hand, in secondary smelting industries, the highest geometric mean air concentration was 125.4${\mu}g/m^3$ in melting operation; followed by casting operation (90.5${\mu}g/m^3$) and pre-treatment operation (43.4${\mu}g/m^3$), respectively. However, in litharge making industries, there were no significant differences of geometric mean air concentrations between litharge operation and stabilizer operation. The proportion of over PEL (50${\mu}g/m^3$) was highest in litharge industry and followed by secondary smelting industries. However The proportions of over PEL(${\mu}g./m^3.$) were decreased by the years of environmental monitoring. The significant reduction of mean air lead concentration since year of 2000 was observed due to more active environmental engineering control and new introduction of new operation in manufacturing process, but may be also influenced by non-engineering method such as reduction of operation hours or reduction of exposure time during actual environmental measurement by industrial hygienist according to more strict enforcement of occupational and safety law by the government.

Smelting and Refining of Silicon (실리콘의 제련과 정제)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.3-11
    • /
    • 2022
  • Silicon is the most abundant metal element in the Earth's crust. Metallurgical-grade silicon (MG-Si) is an important metal that has wide industrial applications, such as a deoxidizer in the steelmaking industry, alloying elements in the aluminum industry, the preparation of organosilanes, and the production of electronic-grade silicon, which is used in the electronics industry as well as solar cells. MG-Si is produced industrially by the reduction smelting of silicon dioxide with carbon in the form of coal, coke, or wood chips in electric arc furnaces. MG-Si is purified by chemical treatments, such as the Siemens process. Most single-crystal silicon is produced using the Czochralski method. These smelting and refining methods will be helpful for the development of new recycling processes using secondary silicon resources.

Current Status of Titanium Smelting Technology (타이타늄 제련기술 현황)

  • Sohn, Ho-Sang;Jung, Jae-Young
    • Resources Recycling
    • /
    • v.25 no.4
    • /
    • pp.68-79
    • /
    • 2016
  • Titanium is the ninth most abundant element in the Earth's crust. It is also the forth most abundant structural metal after aluminum, iron and magnesium. Titanium is conventionally produced by the Kroll process. New processes to produce metallic titanium have been currently developed by many researchers in the world. In this study, the existing technologies, including both commercial and developmental processes, categorized into three groups: those by metallothermic reduction of $TiCl_4$ and $TiO_2$, those by electrolytic reduction of $TiO_2$ and hydrogen reduction of Ti compounds. Their mechanisms for reduction and their features are summarized and discussed in the view of industrial application.

A Study on Remanufacturing Industry for automobile parts (자동차 부품의 재제조산업에 대한 연구)

  • Kang, Bo-Chul;Cho, Jai-Rip
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2010.04a
    • /
    • pp.269-273
    • /
    • 2010
  • Remanufacturing is an industrial manufacturing process. The merits of remanufacturing are to reuse old products to perform like a new product and to save energy, natural resources, landfill space and to reduce air pollution by less re-smelting. This paper proposes a systemic approach for activating the domestic remanufacturing industry. The approach is based on inside and outside regulations to apply remanufacturing companies. And, we analyzed the state and problems of remanufacturing industry for automobile parts.

  • PDF

A Study on Remanufacturing Industry for automobile parts (자동차 부품의 재제조산업 활성화방안에 관한 연구)

  • Song, Byeong-Suk;Cho, Jai-Rip
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2009.10a
    • /
    • pp.230-233
    • /
    • 2009
  • Remanufacturing is an industrial manufacturing process. The merits of manufacturing are to reuse old products to perform like a new product and to save energy, natural resources, landfill space and to reduce air pollution by less re-smelting. This paper proposes a systemic approach for activating the domestic remanufacturing industry. The approach is based on inside and outside regulations to apply remanufacturing companies. And, we analyzed the state and problems of remanufacturing industry for automobile parts.

  • PDF

Systemization of a Remanufacturing Process and its General Guidelines with a Case Study of Automobile Alternators (재제조를 위한 공정 및 가이드라인의 체계화: 자동차 교류발전기를 중심으로)

  • Kim Hyung-Ju;Ryu Shi-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.93-100
    • /
    • 2006
  • Post industrial technologies have improved human standard of living, however, a host of negative environmental consequences from the unlimited industrial appetite have posed serious global challenges. Remanufacturing is an industrial manufacturing process that is to restore old products to perform like a new and to save energy, natural resources, landfill space and to reduce air pollution by less re-smelting. By extending product lift cycle, remanufacturing gives us enormous opportunities for sustainable development of our society. This paper introduces needs and current state of the art in the field of remanufacturing, also analyzes old products in terms of product variety and wear conditions with an example of automobile alternators. Then, a general and a product-specified remanufacturing process will be determined with them. Finally, this paper shows systemized guidelines for remanufacturing process of the specified parts. The results could be also used as a basic information for further remanufacturing applications.

A Provenance Study of Iron Archaeological Sites in the Gyeongsang Province: Petrographic and Geochemical Approaches (경상지역 제철유적의 산지추정 연구: 암석기재학 및 지화학적 접근)

  • Jaeguk Jo;Seojin Kim;Jiseon Han;Su Kyoung Kim;Dongbok Shin;Byeongmoon Kwak;Juhyun Hong;Byeongyong Yu;Jinah Lim
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.475-499
    • /
    • 2023
  • To infer the provenance of raw iron materials utilized in iron production at the archaeological sites in Gyeongsang province, petrographic and geochemical analyses were conducted for smelting samples and major iron ores sourced from ore deposits. The smelting samples excavated from various iron archaeological sites were classified into different types according to their refining processes, such as iron bloom, iron bloom slag, pig iron, pig iron slag, forging iron flake, smithery iron, iron flake, and arrowhead. These samples exhibited discernable differences in their mineralogical components and texture. The enrichments of major elements such as aluminum and calcium in silicate minerals of the residual slags and the high contents of trace elements such as nickel and copper in some iron-making relics reflect the characteristics of raw iron ores, and thus can be regarded as potential indicators for inferring the provenance of source materials. In particular, the compositional ranges of Pb-Sr isotope ratios for the iron smelting samples were classified into three categories: 1) those exhibiting similar ratios to those of the raw iron ores, 2) those enriched in strontium isotope ratio, and 3) those enriched in both lead and strontium isotope ratios. The observed distinct Pb-Sr isotope characteristics in the iron smelting samples suggest the potential contribution of specific additives being introduced during the high-temperature refining process. These results provide a new perspective on the interpretation of the provenance study of the iron archaeological samples in Gyeongsang province, particularly in terms of the potential contribution of additives on the refining process.

EAF Dust Recycling Technology in Japan

  • Sasamoto, Hirohiko;Furukawa, Takeshi
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.9-18
    • /
    • 2001
  • 1. EAF Dust in Japan - Generation and Characteristics. The quantity of dust generated from EAF shops in Japan was estimated to be 520,000 tons/year in 1999. Extremely fine dust (or fume) is formed in the EAF by metal vaporization. Its characteristics such as chemical compositions, phases, particle size, leaching of heavy metal are mentioned. 2. EAF Dust Treatment Methods in Japan. In 1999, 61% of EAF dust was treated by regional zinc recovery processing routes, 25% went to landfill disposal, 4% was reused as cement material, and 10% was treated by on-site processing routes. The problems of EAF dust treatment methods in Japan are: (1) very high treatment cost, and (2) heavy environmental load (leaching of heavy metal, emission of dioxins, depletion of disposal sites, etc). It has been much hoped for that new dust management technology would be developed. 3. New technology of EAF dust treatment in Japan. In Japan, some new technologies of EAF dust treatment have been developed, and some others are in the developing stages. Following five processes are mentioned:. (1) Smelting reduction process by Kawasaki Steel, (2) DSM process by Daido Steel, (3) VHR process by Aichi Steel, (4) On-site dust direct recycling technology, and (5) Process technology of direct separation and recovery of iron and zinc metals contained in high temperature EAF off gas by the Japan Research and Development Center fur Metals.

  • PDF