• Title/Summary/Keyword: new numerical procedure

Search Result 293, Processing Time 0.032 seconds

Numerical Analysis on the Initial Cool-down Performance Inside an Automobile for the Evaluation of Passenger's Thermal Comfort (차량 내부 탑승자의 쾌적성 평가를 위한 초기 냉방운전 성능에 대한 수치해석적 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Baek, Je-Hyun;Kim, Kyung-Chun;Ji, Ho-Seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.115-123
    • /
    • 2010
  • Cool-down performance after soaking is important because it affects passenger's thermal comfort. The cooling capacity of HVAC system determines initial cool down performance in most cases, the performance is also affected by location, and shape of panel vent, indoor seat arrangement. Therefore, optimal indoor designs are required in developing a new car. In this paper, initial cool down performance is predicted by CFD(computational fluid dynamics) analysis. Experimental time-averaging temperature data are used as inlet boundary condition. For more reliable analysis, real vehicle model and human FE model are used in grid generation procedure. Thermal and aerodynamic characteristics on re-circulation cool vent mode are investigated using CFX 12.0. Thermal comfort represented by PMV(predicted mean vote) is evaluated using acquired numerical data. Temperature and velocity fields show that flow in passenger's compartment after soaking is considerably unstable at the view point of thermodynamics. Volume-averaged temperature is decreased exponentially during overall cool down process. However, temperature monitored at different 16 spots in CFX-Solver shows local variation in head, chest, knee, foot. The cooling speed at the head and chest nearby panel vent are relatively faster than at the knee and foot. Horizontal temperature contour shows asymmetric distribution because of the location of exhaust vent. By evaluating the passenger's thermal comfort, slowest cooling region is found at the driver's seat.

Prediction of transverse settlement trough considering the combined effects of excavation and groundwater depression

  • Kim, Jonguk;Kim, Jungjoo;Lee, Jaekook;Yoo, Hankyu
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.851-859
    • /
    • 2018
  • There are two primary causes of the ground movement due to tunnelling in urban areas; firstly the lost ground and secondly the groundwater depression during construction. The groundwater depression was usually not considered as a cause of settlement in previous research works. The main purpose of this study is to analyze the combined effect of these two phenomena on the transverse settlement trough. Centrifuge model tests and numerical analysis were primarily selected as the methodology. The characteristics of settlement trough were analyzed by performing centrifuge model tests where acceleration reached up to 80g condition. Two different types of tunnel models of 180 mm diameter were prepared in order to match the prototype of a large tunnel of 14.4 m diameter. A volume loss model was made to simulate the excavation procedure at different volume loss and a drainage tunnel model was made to simulate the reduction in pore pressure distribution. Numerical analysis was performed using FLAC 2D program in order to analyze the effects of various groundwater depression values on the settlement trough. Unconfined fluid flow condition was selected to develop the phreatic surface and groundwater level on the surface. The settlement troughs obtained in the results were investigated according to the combined effect of excavation and groundwater depression. Subsequently, a new curve is suggested to consider elastic settlement in the modified Gaussian curve. The results show that the effects of groundwater depression are considerable as the settlement trough gets deeper and wider compared to the trough obtained only due to excavation. The relationships of maximum settlement and infection point with the reduced pore pressure at tunnel centerline are also suggested.

On the use of the Lagrange Multiplier Technique for the unilateral local buckling of point-restrained plates, with application to side-plated concrete beams in structural retrofit

  • Hedayati, P.;Azhari, M.;Shahidi, A.R.;Bradford, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.673-685
    • /
    • 2007
  • Reinforced concrete beams can be strengthened in a structural retrofit process by attaching steel plates to their sides by bolting. Whilst bolting produces a confident degree of shear connection under conditions of either static or seismic overload, the plates are susceptible to local buckling. The aim of this paper is to investigate the local buckling of unilaterally-restrained plates with point supports in a generic fashion, but with particular emphasis on the provision of the restraints by bolts, and on the geometric configuration of these bolts on the buckling loads. A numerical procedure, which is based on the Rayleigh-Ritz method in conjunction with the technique of Lagrange multipliers, is developed to study the unilateral local buckling of rectangular plates bolted to the concrete with various arrangements of the pattern of bolting. A sufficient number of separable polynomials are used to define the flexural buckling displacements, while the restraint condition is modelled as a tensionless foundation using a penalty function approach to this form of mathematical contact problem. The additional constraint provided by the bolts is also modelled using Lagrange multipliers, providing an efficacious method of numerical analysis. Local buckling coefficients are determined for a range of bolting configurations, and these are compared with those developed elsewhere with simplifying assumptions. The interaction of the actions in bolted plates during buckling is also considered.

Mission-based Operational Orbit Design for Sun-synchronous Spacecraft (임무기반 태양동기궤도 운영궤도 설계에 관한 연구)

  • Lee, Ji-Marn;No, Tae-Soo;Jung, Ok-Chul;Chung, Dae-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.9
    • /
    • pp.752-759
    • /
    • 2012
  • This paper presents a mission orbit design method for spacecraft which use the sun-synchronous and ground repeat orbits. In this work, we have proposed a new design procedure, "Nonlinear simulation-based numerical optimization technique" using the commercial S/W's such as STK (Satellite Tool kit) and Matlab, which are widely adopted S/W's in the area of orbital mechanics and engineering analysis. Inclusion of all the perturbation effects on the spacecraft not only can more precisely satisfy the mission requirements for sun-synchronicity and repeated ground track, and also operational requirements such as minimum change in the S/C local time, maximization of the contact time with a specified ground station, etc. can be appropriately considered. Design examples for LEO sun-synchronous mission are presented to demonstrate the usefulness of the proposed method in this paper.

Formulation of Generalized Hoek-Brown Model and Development of Rounded Hoek-Brown Model (일반화된 Hoek-Brown 모델의 정식화 및 Rounded Hoek-Brown 모델의 개발)

  • Kim Bum-Sang;Kwon O-Soon;Jang In-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.37-43
    • /
    • 2005
  • Hoek-Brown model, which was developed in order to predict the behavior of rock mass, has widely been utilized and revised by many researchers to solve various problems encountered in tunnelling and slope stability analysis. However, there is no schematic investigation on the application of the Hoek-Brown model to numerical analysis including finite element simulations. In this paper the Hoek-Brown model was formulated as a constitutive model according to the procedure of generalized plasticity theory, and a Rounded Hoek-Brown model, which could overcome the numerical difficulties by modifying the edge part of the yield surface as a curve shape, was newly proposed. The new model could satisfy the requirements as an elasto-plastic constitutive soil model and follow the yield surface of the original Hoek-Brown model in the compression mode. The constitutive equation for the proposed model herein was established and presented to be applicable to the generalized nonlinear finite element analysis.

Performance-based structural fire design of steel frames using conventional computer software

  • Chan, Y.K.;Iu, C.K.;Chan, S.L.;Albermani, F.G.
    • Steel and Composite Structures
    • /
    • v.10 no.3
    • /
    • pp.207-222
    • /
    • 2010
  • Fire incident in buildings is common, so the fire safety design of the framed structure is imperative, especially for the unprotected or partly protected bare steel frames. However, software for structural fire analysis is not widely available. As a result, the performance-based structural fire design is urged on the basis of using user-friendly and conventional nonlinear computer analysis programs so that engineers do not need to acquire new structural analysis software for structural fire analysis and design. The tool is desired to have the capacity of simulating the different fire scenarios and associated detrimental effects efficiently, which includes second-order P-D and P-d effects and material yielding. Also the nonlinear behaviour of large-scale structure becomes complicated when under fire, and thus its simulation relies on an efficient and effective numerical analysis to cope with intricate nonlinear effects due to fire. To this end, the present fire study utilizes a second-order elastic/plastic analysis software NIDA to predict structural behaviour of bare steel framed structures at elevated temperatures. This fire study considers thermal expansion and material degradation due to heating. Degradation of material strength with increasing temperature is included by a set of temperature-stress-strain curves according to BS5950 Part 8 mainly, which implicitly allows for creep deformation. This finite element stiffness formulation of beam-column elements is derived from the fifth-order PEP element which facilitates the computer modeling by one member per element. The Newton-Raphson method is used in the nonlinear solution procedure in order to trace the nonlinear equilibrium path at specified elevated temperatures. Several numerical and experimental verifications of framed structures are presented and compared against solutions in literature. The proposed method permits engineers to adopt the performance-based structural fire analysis and design using typical second-order nonlinear structural analysis software.

A New Design Method of Reinforcement Ahead of a Tunnel Face by using Convergence-confinement Method and Load-transfer Approach (내공변위-제어법과 새로운 하중전이함수를 이용한 터널 천단보강공 설계)

  • In, Sung-Yoon;Jeong, Sang-Seom;Kim, Yong-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2C
    • /
    • pp.81-90
    • /
    • 2009
  • In this study the behavior of a steel pipe structure used as an auxiliary method was evaluated by the convergence-confinement method and load-transfer approach, and the result was compared with that of numerical approach and in-situ measured data. As calculated partially increased displacement of the installed pipe to obtain the tunnel displacement. A numerical analysis simulate well the general behavior of measured displacement of tunnel crown. Through this study, it was found that the proposed procedure produces conservative result so that it can be applied in preliminary design of the auxiliary method of tunnel face.

Nonlinear FEM Analysis for Damage Assessment of Steel Members under Very-Low-Cycle Loading (극저(極低)사이클 하중하(荷重下)에서 강부재(鋼部材)의 손상도평가(損傷度評價)를 위한 유한요소해석(有限要素解析))

  • Park, Yeon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.703-710
    • /
    • 1994
  • A nonlinear FEM analysis of steel members under very-low-cycle loading has been performed in conjunction with experimental works. This analysis is an FEM tracing toward cracking of steel members under cyclic loads such as a strong earthquake. After verifying the procedure by comparing global hysteretic behaviors from the analytical and experimental results, the local stress-strain hysteresis at critical sections for large cyclic deformations was traced by the numerical analysis. Local strain history was discussed in relation to cracking. Based on the experimental and analytical results, a new approach to seismic safety assessment for steel members was proposed in this paper.

  • PDF

Substructuring-based Structural Reanalysis by Multilevel Hybrid Approximation (다단계 혼성근사화에 의한 부구조화 기반 구조 재해석)

  • 황진하;김경일;이학술
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.397-406
    • /
    • 1999
  • A new solution procedure for approximate reanalysis, using the staged hybrid methods with substructuring, is proposed in this study. Displacements are calculated with two step mixed procedures. First step is to introduce the conservative approximation, which is a hybrid form of the linear and reciprocal approximation, as local approximation. In the next step, it is combined with the global approximation by reduced basis approach. Stresses are evaluated from the displacements by matrix transformation. The quality of reanalyzed quantities can be greatly improved through these staged hybrid approximations, specially for large changes in the design. Overall procedures are based on substructuring scheme. Several numerical examples illustrate the validity and effectiveness of the proposed methods.

  • PDF

Optimal design of bio-inspired isolation systems using performance and fragility objectives

  • Hu, Fan;Shi, Zhiguo;Shan, Jiazeng
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.325-343
    • /
    • 2018
  • This study aims to propose a performance-based design method of a novel passive base isolation system, BIO isolation system, which is inspired by an energy dissipation mechanism called 'sacrificial bonds and hidden length'. Fragility functions utilized in this study are derived, indicating the probability that a component, element, or system will be damaged as a function of a single predictive demand parameter. Based on PEER framework methodology for Performance-Based Earthquake Engineering (PBEE), a systematic design procedure using performance and fragility objectives is presented. Base displacement, superstructure absolute acceleration and story drift ratio are selected as engineering demand parameters. The new design method is then performed on a general two degree-of-freedom (2DOF) structure model and the optimal design under different seismic intensities is obtained through numerical analysis. Seismic performances of the biologically inspired (BIO) isolation system are compared with that of the linear isolation system. To further demonstrate the feasibility and effectiveness of this method, the BIO isolation system of a 4-storey reinforced concrete building is designed and investigated. The newly designed BIO isolators effectively decrease the superstructure responses and base displacement under selected earthquake excitations, showing good seismic performance.