• Title/Summary/Keyword: new material model

Search Result 1,065, Processing Time 0.029 seconds

Advanced Protective Relaying Algorithm by Flux-Differential Current Slope Characteristic for Power Transformer (전력용 변압기용 자속-차전류 기울기 특성에 의한 개선된 보호계전 알고리즘)

  • 박철원;신명철
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.7
    • /
    • pp.382-388
    • /
    • 2004
  • The most widely used primary protection for the internal fault detection of power transformers is current percentage differential relaying(PDR). However, the harmonic components could be decreased by magnetizing inrush when there have been changes to the material of iron core or its design methodology. The higher the capacitance of high voltage status and underground distribution, the more differential current includes the second harmonic component during occurrence of an internal fault. Therefore, the conventional harmonic restraint methods need modification. This paper proposes an advanced protective relaying algorithm by fluxt-differential current slope characteristic and trend of voltage and differential current. To evaluate the performance of proposed algorithm, we have made comparative studies of PDR fuzzy relaying, and DWT relaying. The paper is constructed power system model including power transformer, utilizing the WatATP99, and data collection is made through simulation of various internal faults and inrush. As the results of test. the new proposed algorithm was proven to be faster and more reliable.

Computations of Compressible Two-phase Flow using Accurate and Efficient Numerical Schemes

  • Kim, Chong-Am
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.13-17
    • /
    • 2006
  • RoeM and AUSMPW+ schemes are two of the most accurate and efficient schemes which are recently developed for the analysis of single phase gas dynamics. In this paper, we developed two-phase versions of these schemes for the analysis of gas-liquid large density ratio two-phase flow. We adopt homogeneous equilibrium model (HEM) using mass fraction to describe different two phases. In the Eulerian-Eulerian framework, HEM assumes dynamic and thermal equilibrium of the two phases in the same computational mesh. From the mixture equation of state (EOS), we derived new shock-discontinuity sensing term (SDST), which is commonly used in RoeM and AUSMPW+ for the stable numerical flux calculation. The proposed two-phase versions of RoeM and AUSMPW+ schemes are applied on several air-water two-phase test problems. In spite of the large discrepancy of material properties such as density, enthalpy, and speed of sound, the numerical results show that both schemes provide very satisfactory solutions.

  • PDF

A Study on enhancement of emotional quality of prototype-car (시작 차량 감성 품질 개선에 관한 연구)

  • 최재원;양화준;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.358-361
    • /
    • 2000
  • To reduce the leadtime for a new model according to the strict market requirements, automobile manufacturer begins to utilize 3-dimensional CAD based techniques such as DMU(Digital Mock-Up). RP(Rapid Prototyping), VE(Virtual Engineering). But, not so many satisfactory utilities have been introduced to deal with the emotional properties such as embossment on the surface of interior parts and touch from material characteristics in virtual environment. It is required to manufacture prototype parts to verify actual feeling of the passengers in real automobile. This paper suggests a methodology to enhance emotional property via embedding embossment on the surface of prototype car interior trim without deterioration of dimensional accuracy using RIM(Reaction Injection Molding) and vacuum forming method.

  • PDF

Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Rabia, Benferhat
    • Coupled systems mechanics
    • /
    • v.9 no.5
    • /
    • pp.473-498
    • /
    • 2020
  • This paper presents a careful theoretical investigation into interfacial stresses in reinforced concrete foundation beam repairing with composite plate. The essential issue in the analysis of reinforced structures with composite materials is to understand the individual behaviour of each material and its interaction with the remaining ones. The present model is based on equilibrium and deformations compatibility requirements in and all parts of the repaired RC foundation beam, i.e., the reinforced concrete foundation beam, the composite plate and the adhesive layer. The theoretical predictions are compared with other existing solutions, By comparisons between the existing solutions and the present new solution enable a clear appreciation of the effects of various parameters such as the geometric characteristics and mechanical properties of the components of the repaired beam, as well as the geotechnical stresses of the soil are considered. This research is helpful for the understanding on mechanical behaviour of the interface and design of the composite-concrete hybrid structures.

Reduction of the bondwire parasitic effect using dielectric materials for microwave device packaging (초고주파 소자 실장을 위한 유전체를 이용하는 본딩와이어 기생 효과 감소 방법)

  • 김성진;윤상기;이해영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.2
    • /
    • pp.1-9
    • /
    • 1997
  • For the reduction of parasitic inductance and matching of bonding wire in the package of microwave devices, we propose multiple bonding wires buried in a dielectric material of FR-4 composite. This structure is analyzed using the method of moments (MoM) and compared with the common bondwires and ribbon interconnections. The FR-4 composite is modelled by the cole-cole model which can consider the loss and the variation of the permittivity in a frequency. At 20 GHz, the parasitic reactance is reduced by 90%, 80%, 60% compared to those of a single bonding wire in air, double bonding wires in air and ribbon interconnection in air, respectively. Also, the new bondwire shows very good matching of 60.ohm characteristic impedance and has 15dB, 10dB, 5dB improvement of the return loss and 2.5dB, 0.7dB, 0.2dB improvement of the insertion loss compared to the common interconnections. This technique can minimize the parasitic effect of bondwires in microwave device packaging.

  • PDF

Abrasive-reaction Interactions for Nano-composite Structures

  • T., Ketegenov;O., Tyumentseva;D., kasymbecova;N., Korobova;Z., Katranova;F., Urakaev
    • Journal of the Speleological Society of Korea
    • /
    • no.71
    • /
    • pp.13-17
    • /
    • 2006
  • New methods of nano sized material and composite coating preparations have been considered on the base of mathematical model of abrasion reaction interaction of milling and grinding bodies in planetary centrifugal mill. The essence of the method is the abrasive and oxidative wear of the milling bodies and amorphous (better inert) additives. Interactions between them has been supplied the necessary impulse of pressure and temperature on the impact frictional contacts and promoted chemical processes. The offered method can find application for such processing as sintering and geological minerals opening.

Prediction of Drawbead Restraining Force by Hybrid Membrane/Bending Method (하이브리드 박막/굽힘 방법을 이용한 드로비드력의 예측)

  • Lee, M.G.;Chung, K.;Wagoner, R.H.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.533-538
    • /
    • 2006
  • A simplified numerical procedure to predict drawbead restraining forces(DBRF) has been developed based on the hybrid membrane/bending method which superposes bending effects onto membrane solutions. As a semi-analytical method, the new approach is especially useful to analyze the effects of various constitutive parameters. The present model can accommodate general anisotropic yield functions along with non-linear isotropic-kinematic hardening under the plane strain condition. For the preliminary results, several sensitivity analyses for the process and material effects such as friction, drawbead depth, hardening behavior including the Bauschinger effect and yield surface shapes on the DBRF are carried out.

Multi-scale Modeling of Plasticity for Single Crystal Iron (단결정 철의 소성에 대한 멀티스케일 모델링)

  • Jeon, J.B.;Lee, B.J.;Chang, Y.W.
    • Transactions of Materials Processing
    • /
    • v.21 no.6
    • /
    • pp.366-371
    • /
    • 2012
  • Atomistic simulations have become useful tools for exploring new insights in materials science, but the length and time scale that can be handled with atomistic simulations are seriously limiting their practical applications. In order to make meaningful quantitative predictions, atomistic simulations are necessarily combined with higher-scale modeling. The present research is thus concerned with the development of a multi-scale model and its application to the prediction of the mechanical properties of body-centered cubic(BCC) iron with an emphasis on the coupling of atomistic molecular dynamics with meso-scale discrete dislocation dynamics modeling. In order to achieve predictive multi-scale simulations, it is necessary to properly incorporate atomistic details into the meso-scale approach. This challenge is handled with the proposed hierarchical information passing strategy from atomistic to meso-scale by obtaining material properties and dislocation mobility. Finally, this fundamental and physics-based meso-scale approach is employed for quantitative predictions of the mechanical response of single crystal iron.

Characteristic Simulation of PM-Type Magnetic Circuit Breaker

  • Park, Han-Seok;Jung, Hong-Sub;Woo, Kyung-il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1279-1285
    • /
    • 2004
  • This paper presents the characteristic simulation of PM-type magnetic circuit breaker with the 2D finite element magnetic field solution including non-linearity of the material and an eddy current. Change of dynamic characteristic of the actuator is quantified from the finite element analysis. The results obtained from a commercial finite element analysis software are compared with those calculated from the developed finite element analysis software. A new modified model to decrease the eddy current is proposed. The characteristics of the two models are compared.

Nanoscale Nonlinear Dynamics on AFM Microcantilevers (AFM 마이크로캔틸레버의 나노 비선형 동역학)

  • Lee, S.I.;Hong, S.H.;Lee, J.M.;Raman, A.;Howell, S.W.;Reifenberger, R.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1560-1565
    • /
    • 2003
  • Tapping mode atomic force microscopy (TM-AFM) utilizes the dynamic response of a resonating probe tip as it approaches and retracts from a sample to measure the topography and material properties of a nanostructure. We present recent results based on nonlinear dynamical systems theory, computational continuation techniques and detailed experiments that yield new perspectives and insight into AFM. A dynamic model including van der Waals and Derjaguin-Muller-Toporov (DMT) contact forces demonstrates that periodic solutions can be represented with respect to the approach distance and excitation frequency. Turning points on the surface lead to hysteretic amplitude jumps as the tip nears/retracts from the sample. Experiments are performed using a tapping mode tip on a graphite sample to verify the predictions.

  • PDF