• Title/Summary/Keyword: new material model

Search Result 1,065, Processing Time 0.033 seconds

Analysis of the shrinkage and warpage of Wafer lens during UV curing (Lens 성형시 UV경화 반응에 따른 수축 및 변형 대한 해석적 접근)

  • Park, Sihwan;Moon, Jong-Sin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6464-6471
    • /
    • 2014
  • The UV curing method is a popular process for lens molding on a unit wafer. This process, however, has several drawbacks including wafer adhesion during the ejection process after curing, errors in lens shape and wafer warpage due to material shrinkage during the curing process, and lens centering errors on both sides of a wafer. Among these, the lens shape error and warpage are influenced directly by the UV curing process due to factors including the UV radiation uniformity, the degree of cure according to UV intensity, and the shrinkage characteristics of the material. Therefore, a theory is needed not only to understand the change in the material characteristics, such as the shrinkage rate due to the curing reaction, but also to establish a model. In addition, an analysis system is needed to realize the model. This study proposes a new analysis method for the wafer lens molding process by Comsol modeling. This method was verified by comparing the results with those of the actual process.

Elastic local buckling of thin-walled elliptical tubes containing elastic infill material

  • Bradford, M.A.;Roufegarinejad, A.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.143-156
    • /
    • 2008
  • Elliptical tubes may buckle in an elastic local buckling failure mode under uniform compression. Previous analyses of the local buckling of these members have assumed that the cross-section is hollow, but it is well-known that the local buckling capacity of thin-walled closed sections may be increased by filling them with a rigid medium such as concrete. In many applications, the medium many not necessarily be rigid, and the infill can be considered to be an elastic material which interacts with the buckling of the elliptical tube that surrounds it. This paper uses an energy-based technique to model the buckling of a thin-walled elliptical tube containing an elastic infill, which elucidates the physics of the buckling phenomenon from an engineering mechanics basis, in deference to a less generic finite element approach to the buckling problem. It makes use of the observation that the local buckling in an elliptical tube is localised with respect to the contour of the ellipse in its cross-section, with the localisation being at the region of lowest curvature. The formulation in the paper is algebraic and it leads to solutions that can be determined by implementing simple numerical solution techniques. A further extension of this formulation to a stiffness approach with multiple degrees of buckling freedom is described, and it is shown that using the simple one degree of freedom representation is sufficiently accurate for determining the elastic local buckling coefficient.

Effect of strain ratio variation on equivalent stress block parameters for normal weight high strength concrete

  • Kumar, Prabhat
    • Computers and Concrete
    • /
    • v.3 no.1
    • /
    • pp.17-28
    • /
    • 2006
  • Replacement of actual stress distribution in a reinforced concrete (RC) flexural member with a simpler geometrical shape, which maintains magnitude and location of the resultant compressive force, is an acceptable conceptual trick. This concept was originally perfected for normal strength concrete. In recent years, high strength concrete (HSC) has been introduced and widely used in modern construction. The stress block parameters require updating to account for special features of HSC in the design of flexural members. In future, more varieties of concrete may be developed and a corresponding design procedure of RC flexural members will be required. The usual practice is to conduct large number of experiments on various sizes of specimen and then evolve an empirical relation. This paper presents a numerical procedure through which the stress block parameters can be numerically derived for a given strain ratio variation. The material model for concrete is presented and computational procedure is described. This procedure is illustrated with several variations of strain ratio. The advantages of numerical procedure are that it costs less and it can be used with new material models for any new variety of concrete.

Multi-dimensional seismic response control of offshore platform structures with viscoelastic dampers (II-Experimental study)

  • He, Xiao-Yu;Zhao, Tie-Wei;Li, Hong-Nan;Zhang, Jun
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.2
    • /
    • pp.175-194
    • /
    • 2016
  • Based on the change of traditional viscoelastic damper structure, a brand-new damper is designed to control simultaneously the translational vibration and the rotational vibration for platforms. Experimental study has been carried out on the mechanical properties of viscoelastic material and on its multi-dimensional seismic response control effect of viscoelastic damper. Three types of viscoelastic dampers with different shapes of viscoelastic material are designed to test the influence of excited frequency, strain amplitude and ambient temperature on the mechanical property parameters such as circular dissipation per unit, equivalent stiffness, loss factor and storage shear modulus. Then, shaking table tests are done on a group of single-storey platform systems containing one symmetric platform and three asymmetric platforms with different eccentric forms. Experimental results show that the simulation precision of the restoring force model is rather good for the shear deformation of viscoelastic damper and is also satisfied for the torsion deformation and combined deformations of viscoelastic damper. The shaking table tests have verified that the new-type viscoelastic damper is capable of mitigating the multi-dimensional seismic response of offshore platform.

Development and Validation of FE Adult Headform Impactor for Pedestrian Protection (성인 머리모형 임팩터의 FE 모델 개발)

  • Choi, Ji-Hun;Park, Bu-Chang;Kim, Jong-Sun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.64-69
    • /
    • 2012
  • Head injury is one of the most common cause of deaths in car-to-pedestrian collisions. To reduce the severity of such injuries, many international safety committees have performed headform impact test for pedestrian protection. In this paper, an adult headform impactor model is developed based on the finite element (FE) method and validated through the numerical simulation. The skin material of headform impactor is known as polyvinyl chloride skin (PVC) and its material was assumed as viscoelastic. The viscoelastic parameters of headform skin are identified by a series of trial and error methods. The new developed FE adult headform impactor is verified by the drop test and FE JARI adult headform impactor provided by Madymo program.

THREE-DIMENSIONAL CRYSTALLIZING ${\pi}$-BONDING , ${\pi}$-FAR INFRARED RAYS AND NEW SPACE ENERGY RESOURCE

  • Oh, Hung-Kuk
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.04a
    • /
    • pp.73-87
    • /
    • 1996
  • The outer-most electrons of metal atoms and the remining valence electrons of any molecular atoms make three dimensional crystallizing $\pi$-bondings. The electrons on the $\pi$-bonding orbital rotate clockwise or counter-clockwise and they then make electro-magnetic waves between atoms on the orbital because electron move between plus charged ions. The three dimensional crystallizing $\pi$-bonding orbitals are quantum-mechanically modeled by a cyclic Kronig-Penny Model and energy band structures are analyzed with their potential barrier thickness. The waves generated between plus charged ions are the particular $\pi$-far infrared rays, which have dual properties between material and electro-magnetic waves and can be measured not by modern electro-magnetic tester but biosensor such as finger's force tester. Because the $\pi$-rays can be modulated with electro-magnetic waves it can be applied for harmful electro-magnetic wave killers. Because the $\pi$-rays make new three dimensional crystallizing $\pi$-bonding orbitals in the material the food and drink can be transformed into a helpful physical constitutional property for human health. Distinction between crystalline and amorphous metals is possible because very strong crystalline $\pi$-bonding orbitals can not easily be transformed into another. The $\pi$-rays can also be applied for biofunctional diagnostics and therapy. Gravitational field is one of the electro-magnetic fields. And also magnetic field and gravitational force field make charge's movement. ($\times$ = q, : magnetic field, : force field, q: plus charge, : velocity field)

  • PDF

Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT

  • Nebab, Mokhtar;Atmane, Hassen Ait;Bennai, Riadh;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.511-525
    • /
    • 2019
  • This paper presents an analytical study of wave propagation in simply supported graduated functional plates resting on a two-parameter elastic foundation (Pasternak model) using a new theory of high order shear strain. Unlike other higher order theories, the number of unknowns and governing equations of the present theory is only four unknown displacement functions, which is even lower than the theory of first order shear deformation (FSDT). Unlike other elements, the present work includes a new field of motion, which introduces indeterminate integral variables. The properties of the materials are assumed to be ordered in the thickness direction according to the two power law distributions in terms of volume fractions of the constituents. The wave propagation equations in FG plates are derived using the principle of virtual displacements. The analytical dispersion relation of the FG plate is obtained by solving an eigenvalue problem. Numerical examples selected from the literature are illustrated. A good agreement is obtained between the numerical results of the current theory and those of reference. A parametric study is presented to examine the effect of material gradation, thickness ratio and elastic foundation on the free vibration and phase velocity of the FG plate.

A Study on Bearing Capacity Evaluation Method of Surface Reinforcement Method for Soft Ground in Consideration of Stiffness (강성도를 고려한 연약지반 표층처리공법 지지력산정방법에 관한 연구)

  • Ham, Tae-Gew;Seo, Se-Gwan;Cho, Sam-Deok;Yang, Kee-Sok;You, Seung-Kyong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1118-1125
    • /
    • 2009
  • This study, as basic research which was intended to develope the surface reinforcement method using reinforcement material which is applicable to very soft ground in Korea, was aimed at proposing Bearing Capacity Evaluation method for the surface ground improvement method. To that end, a wide width tensile test using geotextile, geogrid and steel bar (substitute for bamboo) and 21 kinds of the laboratory model tests with the end restraint conditions of the reinforcement that comprises the constrained and partially constrained (3 types) conditions were conducted. According to result of tests, Terzaghi's bearing capacity method is adequate to calculate bearing capacity in non-stiff material(geotextile, geogrid). But, It can't adequate to stiff material(bamboo net). So, New bearing capacity method suggest surface reinforcement method of very soft ground which Terzaghi's bearing capacity method modify for effect of stiffness.

  • PDF

Development of Automated Analysis System for Model Plane Engine Using Fuzzy Knowledge Processing

  • Lee, Joon-Seong;Lee, Shin-Pyo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.171-176
    • /
    • 2002
  • This paper describes a new automated analysis system for model plane engine. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry technique, is incorporated into the system, together with one of commercial FE analysis codes, ANSYS, and one of commercial solid modelers, Designbase, The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena of plane engine to be analyzed, i.e. deformation analysis, thermal analysis and so on. The FE models are then automatically analyzed by the FE analysis code. Among a whole process of analysis, the definition of a geometry model, the designation of local node patterns, the assignment of material properties and boundary conditions onto the geometry model are only the interactive processes to be done by a user. The interactive operations can be processed in a few minutes. The other processes which are time consuming and labour-intensive in conventional CAE systems are fully automatically performed in a personal computer environment. The proposed analysis system is successfully applied to evaluate a model plane entwine.

Structural Behavior Analysis of Two-way RC Slabs by p-Version Nonlinear Finite Element Model (p-Version 비선형 유한요소모텔에 의한 2방향 철근 콘크리트 슬래브의 역학적 거동해석)

  • Cho, Jin-Goo;Park, Jin-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.4
    • /
    • pp.15-24
    • /
    • 2005
  • This study is focused on modeling to predict the behavior of two-way RC slabs. A new finite element model will be presented to analyze the nonlinear behavior of RC slabs. The numerical approach is based on the p-version degenerate shell element including theory of anisotropic laminated composites, theory of materially and geometrically nonlinear plates. In the nonlinear formulation of this model, the total Lagrangian formulation is adopted with large deflections and moderate rotations being accounted for in the sense of von Karman hypothesis. The material model is based on the Kuper's yield criterion, hardening rule, and crushing condition. The validity of the proposed p-version nonlinear RC finite element model is demonstrated through the load-deflection curves and the ultimate loads. It is shown that the proposed model is able to adequately predict the deflection and ultimate load of two-way slabs with respect to steel arrangements and steel ratios.