• Title/Summary/Keyword: new material model

Search Result 1,065, Processing Time 0.033 seconds

A Study on Trade Area Analysis with the Use of Modified Probability Model (변형확률모델을 활용한 소매업의 상권분석 방안에 관한 연구)

  • Jin, Chang-Beom;Youn, Myoung-Kil
    • Journal of Distribution Science
    • /
    • v.15 no.6
    • /
    • pp.77-96
    • /
    • 2017
  • Purpose - This study aims to develop correspondence strategies to the environment change in domestic retail store types. Recently, new types of retails have emerged in retail industries. Therefore, trade area platform has developed focusing on the speed of data, no longer trade area from district border. Besides, 'trade area smart' brings about change in retail types with the development of giga internet. Thus, context shopping is changing the way of consumers' purchase pattern through data capture, technology capability, and algorithm development. For these reasons, the sales estimation model has been shown to be flawed using the notion of former scale and time, and it is necessary to construct a new model. Research design, data, and methodology - This study focuses on measuring retail change in large multi-shopping mall for the outlook for retail industry and competition for trade area with the theoretical background understanding of retail store types and overall domestic retail conditions. The competition among retail store types are strong, whereas the borders among them are fading. There is a greater need to analyze on a new model because sales expectation can be hard to get with business area competition. For comprehensive research, therefore, the research method based on the statistical analysis was excluded, and field survey and literature investigation method were used to identify problems and propose an alternative. In research material, research fidelity has improved with complementing research data related with retail specialists' as well as department stores. Results - This study analyzed trade area survival and its pattern through sales estimation and empirical studies on trade areas. The sales estimation, based on Huff model system, counts the number of households shopping absorption expectation from trade areas. Based on the results, this paper estimated sales scale, and then deducted modified probability model. Conclusions - In times of retail store chain destruction and off-line store reorganization, modified Huff model has problems in estimating sales. Transformation probability model, supplemented by the existing problems, was analyzed to be more effective in competitiveness business condition. This study offers a viable alternative to figure out related trade areas' sale estimation by reconstructing new-modified probability model. As a result, the future task is to enlarge the borders from IT infrastructure with data and evidence based business into DT infrastructure.

Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory

  • Besseghier, Abderrahmane;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.601-614
    • /
    • 2017
  • In this work, free vibration analysis of size-dependent functionally graded (FG) nanoplates resting on two-parameter elastic foundation is investigated based on a novel nonlocal refined trigonometric shear deformation theory for the first time. This theory includes undetermined integral variables and contains only four unknowns, with is even less than the conventional first shear deformation theory (FSDT). Mori-Tanaka model is employed to describe gradually distribution of material properties along the plate thickness. Size-dependency of nanosize FG plate is captured via the nonlocal elasticity theory of Eringen. By implementing Hamilton's principle the equations of motion are obtained for a refined four-variable shear deformation plate theory and then solved analytically. To show the accuracy of the present theory, our research results in specific cases are compared with available results in the literature and a good agreement will be demonstrated. Finally, the influence of various parameters such as nonlocal parameter, power law indexes, elastic foundation parameters, aspect ratio, and the thickness ratio on the non-dimensional frequency of rectangular FG nanoscale plates are presented and discussed in detail.

A Simulation on the Performance of Durability in a Polymer Solar Glazing Design

  • Cahyono, Sukmaji Indro;Eom, Han-Saem;Ryu, Nam-Jin;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.331-336
    • /
    • 2012
  • Nowaday the conventional solar collector material prices are rising up because of pricy metal material over the world. The solar collector is too expensive to recycle to save the earth. Advanced polymer research is founded a high thermal resistant polymer and also it has high sun energy transmission. It also has cheaper material and easy manufacturing process, compare with conventional solar collector material. This paper is focussing on glazing simulation of polymer solar collector against wind pressure. The modeling geometry of polymer solar glazing are purposed by single layer, double layer hollow, zig-zag and tower. A simulation by using the Finite Volume was conducted to get Factor of Safety (FoS). The purpose of this paper is to find the best polymer glazing design, which can be as reference for the solar collector company to build Polymer. Hope fully new model of polymer solar collector has cheap, light, high sun energy transmitter, easy to be made and strong against wind force characteristics.

  • PDF

A new five unknown quasi-3D type HSDT for thermomechanical bending analysis of FGM sandwich plates

  • Benbakhti, Abdeldjalil;Bouiadjra, Mohamed Bachir;Retiel, Noureddine;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.975-999
    • /
    • 2016
  • This work investigates a thermomechanical bending analysis of functionally graded sandwich plates by proposing a novel quasi-3D type higher order shear deformation theory (HSDT). The mathematical model introduces only 5 variables as the first order shear deformation theory (FSDT). Unlike the conventional HSDT, the present one presents a novel displacement field which includes undetermined integral variables. The mechanical properties of functionally graded layers of the plate are supposed to change in the thickness direction according to a power law distribution. The core layer is still homogeneous and made of an isotropic ceramic material. The governing equations for the thermomechanical bending investigation are obtained through the principle of virtual work and solved via Navier-type method. Interesting results are determined and compared with quasi-3D and 2D HSDTs. The influences of functionally graded material (FGM) layer thickness, power law index, layer thickness ratio, thickness ratio and aspect ratio on the deflections and stresses of functionally graded sandwich plates are discussed.

Topology Optimization of Plane Structures with Multiload Case using a Lower order Finite Element (저차 유한요소를 이용한 다하중 경우를 가지는 평면구조물의 위상최적화)

  • 이상진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.59-68
    • /
    • 2003
  • An optimization Program is developed to produce new topologies of plane structures under multiload case. A four-node finite element is used in the response analysis to reduce the computation time and to ultimately achieve practical topology optimization. The bilinear finite element is prone to produce chequer-boarding phenomenon and a simple filtering process is therefore adopted. An artificial material model is employed to represent the structural material and the resizing algorithm based on the optimality criteria is adopted to update the material density parameter during optimization process. With newly developed optimization program, the comparison study has been made between single and multiload cases and its results are described in this paper. From numerical results, it appears that multiload case should be considered to achieve the practical topology optimization.

Methodology for Optimizing Permittivity Distribution of 145 kV Miniaturized Functional Graded Spacer Using Non-Dominated Sorting Genetic Algorithm-II (비지배 정렬 유전 알고리즘-II를 이용한 145 kV급 축소형 경사기능성 적용 스페이서의 유전율 분포 최적화 방법론)

  • Noh, Yo-Han;Kim, Seung-Hyun;Cheong, Jong-Hun;Cho, Han-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.225-230
    • /
    • 2020
  • Recently, with the miniaturization of GIS, there is a need for the miniaturization of spacers as accessories. Miniaturized spacers make it difficult to secure adequate insulation distances, resulting in a more concentrated electric field at the triple junction of high-voltage (HV) conductor-insulator (spacer)-insulation gas (SF6), which is a weakness in GIS. Therefore, by introducing a new concept design technology, functionally graded material (FGM), which is recently applied to various materials and parts industries, three-dimensional control of the dielectric constant distribution in a spacer can be expected to alleviate triple-junction electric field occupancy and improve insulation performance. In this study, we propose an optimized model using NSGA-II to optimize the permittivity distribution of FGM applied spacer.

Fabrication and new model of saturated I-V characteristics of hydrogenerated amorphous silicon thin film transistor (비정질 실리콘 박막 트랜지스터 포화전압대 전류특성의 새로운 모델)

  • 이우선;김병인;양태환
    • Electrical & Electronic Materials
    • /
    • v.6 no.2
    • /
    • pp.147-151
    • /
    • 1993
  • PECVD에 의해 Burried gate 비정질 실리콘 박막트랜지스터를 제작하여 포화 전압 대 전류 특성에 대하여 새로운 해석을 하였고 해석 결과는 실험적으로 증명되었다. 본 연구의 결과 실험된 전달특성과 출력특성을 모델화 하였는데 이 모델식은 I$_{D}$와 V$_{G}$의 실험결과에서 얻어지는 3가지 함수를 기본으로 모델화 되었다. 포화 드레인 전류는 V$_{G}$가 증가할수록 증가되었고 디바이스의 포화는 드레인 전압이 커질수록 증가되었으며 문턱전압은 감소됨을 보였다.

  • PDF

Advances and Trends in Computational Structural Engineering (전산 구조 공학의 발전과 연구 동향)

  • 최창근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1988.10a
    • /
    • pp.1-6
    • /
    • 1988
  • In this study, the current progress in computational structural engineering and research trends are discussed. The development of new finite elements, error analysis and adaptive mesh generation, material constitutive model, boundary element methods, structural optimal design, hardware/software, AI application and expert systems are particularly emphasized. The rapid development in computer technologies provides good environment for the technical advancement in computational structural engineering.

  • PDF

Study of Effective Stiffness and Effective Strength for a Pinwheel Model combined with Diamond Truss-Wall Corrugation (P-TDC) (다이아몬드 트러스 벽면으로 구성된 P-TDC 모델의 강성 및 강도 연구)

  • Choi, Jeong-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.3
    • /
    • pp.109-124
    • /
    • 2016
  • The objective of this paper is to find the density, stiffness, and strength of truss-wall diamond corrugation model combined with pinwheel truss inside space. The truss-wall diamond corrugation (TDC) model is defined as a unit cell coming from solid-wall diamond corrugation (SDC) model. Pinwheel truss-wall diamond corrugation (P-TDC) model is made by TDC connected with pinwheel structure inside of the space. Derived ideal solutions of P-TDC is based on truss-wall and pinwheel truss model at first. And then it is compared with Gibson-Ashby's ideal solution. To validate the ideal solutions of the P-TDC, ABAQUS software is used to predict the density, strength, and stiffness, and then each of them are compared to the ideal solution of Gibson-Ashby with a log-log scale. Applied material property is stainless steel 304 because of having cost effectiveness. Applied parameters for P-TDC are 1 thru 5 mm diameter within fixed opening width as 4mm. In conclusion, the relative Young's modulus and relative yield strength of the P-TDC unit model is reasonable matched to the ideal expectations of the Gibson-Ashby's theory. In nearby future, P-TDC model is hoped to be applied to make sandwich core structure by advanced technologies such as 3D printing skills.

Development of Effective Stiffness and Effective Strength for a Truss-Wall Rectangular model combined with Micro-Lattice Truss (트러스 벽면과 미세격자 트러스로 구성된 정육면체 단위모델의 강성 및 강도 개발)

  • Choi, Jeong-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.3
    • /
    • pp.133-143
    • /
    • 2016
  • The objective in here is to find the density, stiffness, and strength of truss-wall rectangular (TWR) model which is combined with lattice truss (MLT) inside space. The TWR unit-cell model is defined as a unit cell originated from a solid-wall rectangular (SWR) model and it has an empty space inside. Thus, the empty space inside of the TWR is filled with lattice truss model defined as TWR-MLT. The ideal solutions derived of TWR-MLT are based on TWR with MLT model and it has developed by Gibson-Ashby's theory. To validate the ideal solutions of the TWR-MLT, ABAQUS software is applied to predict the density, strength, and stiffness, and then each of them are compared with the Gibson-Ashby's ideal solution as a log-log scale. Applied material property is stainless steel 304 because of cost effectiveness and easy to get around. For the analysis, SWR and TWR-MLT models are 1mm, 2mm, and 3mm truss diameter separately within a fixed 20mm opening width. In conclusion, the relative Young's modulus and relative yield strength of the TWR-MLT unit model is reasonably matched to the ideal expectations of the Gibson-Ashby's theory. In nearby future, TWR-MLT model can be verified by advanced technologies such as 3D printing skills.t.