• Title/Summary/Keyword: new fungicide

Search Result 73, Processing Time 0.028 seconds

Field Performance of a New Fungicide Ethaboxam Against Cucumber Downy Mildew, Potato Late Blight and Pepper Phytophthora Blight in Korea

  • Kim, Dal-Soo;Prak, Hyun-Cheol;Chun, Sam-Jae;Yu, Seung-Hun;Park, Kyong-Ju;Oh, Jeung-Haing;Shin, Kwang-Hoon;Koh, Young-Jin;Kim, Byung-Sup;Hahm, Young-Il;Chung, Bong-Koo
    • The Plant Pathology Journal
    • /
    • v.15 no.1
    • /
    • pp.48-52
    • /
    • 1999
  • Ethaboxam is the first proprietary fungicide developed in Korea, registered in 1998 and commercialized in 1999 by LG Chemical Ltd., Korea. It is a derivative of aminothiazole carboxamide and formulated into 25% wettable powder for practical application in fields. Ethaboxam effectively controlled cucumber downy mildew caused by Pseudoperonospora cubensis, potato late blight caused by Phytophthora infestans, and pepper Phytophthora blight caused by P. capsici, and was superior or comparable to the commercial standards, when foliarly sprayed 3∼5 times until dripping off at approximately 7-day intervals during the growing season. Ethaboxam was required at least 125 mg/liter and 250 mg/liter for effective control of cucumber downy mildew, and potato late blight and pepper Phytophthora blight, respectively. There was not phytotoxicity observed o leaves, stems or fruits of cucumber, potato and pepper from any trial.

  • PDF

Frequency of Blue Staining Fungi isolated from Pine Trees of Experimental Forests in Kangwon National University and Its Resistance to Fungicide, Woodguard

  • Pashenova, Natalia;Lee, Jong Kyu;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.2 s.130
    • /
    • pp.56-64
    • /
    • 2005
  • This study was performed to investigate the frequency of blue staining fungal species collected from pine trees, Experimental Forests of Kangwon National University in Korea based on their morphological characteristics. In addition the tolerance to fungicide, Woodguard, was assessed to get basic knowledges for preventing blue stain of wood. Totally Leptographium-type fungi were dominated by 79.3% among Ophiostomatoid fungi associated with scolityd bark beetles in pine trees. Leptographium-type Ds-isolates which have unusual morphology were collected as frequency of 17.0%. The most distinct differeneces of these Ds-isolates from L. procerum were the presence of roughened hyphae and flask-shaped conidiophores that have never been mentioned formerly for L. procerum, but since these Ds-isolates formed black concentric rings being a property of L. procerum, the Df-isolates were characterized as Leptographium-type fungi, which are the most common species with the highest frequency by 33.2% in this particular area. According to our experimental results, Leptographium-type Ds- and Df-isolates were very resistant to fungicide, Woodguard, therefore it was suggested that a new method for wood protection from the blue staining fungi should be developed. Exact identification of blue staining isolates collected from pine trees is keep going.

New Fungicides: Opportunities and Challenges - A Case Study with Dimethomorph

  • Spadafora, V. J.;Sieverding, E.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1998.06a
    • /
    • pp.50-69
    • /
    • 1998
  • Dimethomorph is a novel fungicide with a high level of activity against diseases induced by certain Oomycetes, including fungal populations that are resistant to other products. In several ways, this fungicide illustrates the opportunities and challenges presented by many modern pesticides. The specific mode of action, which affects cell wall formation, is associated with a very high level of performance and low dose rates under field conditions. These low dose rates, combined with a low level of toxicity to non-target organisms present an outstanding safety profile. This same highly-specific mode of action, however, limits the spectrum of activity and suggests the need for a resistance management plan, both of which must be addressed in new product development. In addition, the biological and physiochemical properties of this, and other new products are not adequately described by the traditional classification of fungicides into“protectant”and“systemic”types. These unique profiles provide novel and useful products for disease control.

  • PDF

Baseline Sensitivity to Mandipropamid Among Isolates of Phytophthora capsici Causing Phytophthora Blight on Pepper

  • Jang, Ho-Sun;Lee, Soo-Min;Kim, Sun-Bo;Kim, Joo-Hyung;Knight, Susan;Park, Kwee-Doo;McKenzie, Duncan;Kim, Heung-Tae
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.317-321
    • /
    • 2009
  • Sensitivity to the new carboxylic acid amide fungicide, mandipropamid, of Phytophthora capsici causing pepper Phytophthora blight was determined on 187 isolates collected in Korea over 3 years, from 2005 to 2007. All isolates were sensitive to mandipropamid, with $EC_{30}$ values for growth of mycelia ranging from 0.001 to $0.037\;{\mu}g/ml$. Among the isolates, 147 (79.0%) isolates were sensitive to metalaxyl, whereas others were resistant to this fungicide. Mandipropamid had the same effect on mycelium growth of both metalaxyl-sensitive and metalaxyl-resistant isolates, indicating an absence of cross-resistance between these two fungicides. Comparison of the sensitivities of P. capsici isolates showed a positive correlation between sensitivity to mandipropamid and dimethomorph ($r^2$=0.8533). The results of this study indicate that there is no evidence for development of resistance to mandipropamid in this population of P. capsici isolates collected in Korea.

Biotransformation of a Fungicide Ethaboxam by Soil Fungus Cunninghamella elegans

  • PARK, MI-KYUNG;KWANG-HYEON LIU;YOONGHO LIM;YOUN-HYUNG LEE;HOR-GIL HUR;JEONG-HAN KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.43-49
    • /
    • 2003
  • Metabolism of a new fungicide ethaboxam by soil fungi was studied. Among the fungi tested, Cunninghamelia elegans produced metabolites from ethaboxam, which were not found in the control experiments. M5, a major metabolite from ethaboxam was firmly identified as N-deethylated ethaboxam by LC/MS/MS and NMR. N-Deethylated ethaboxam has been found as a single metabolite in in vitro metabolism with rat liver microsomes. Ml was proved to be 4-ethyl-2-(ethylamino)-1,3-thiazole-5-carboxamide (ETC) by comparing with the authentic compound. In addition, M2, M3, and M4, and M6 were tentatively Identified by LC/MS/MS as hydroxylated and methoxylated ethaboxams, respectively. Production of the major metabolite, N-deethylated ethaboxam, by the fungus suggested that C. elegans would be an efficient eukaryotic microbial candidate for evaluating xenobiotic-driven mammalian risk assessment.

Residues of a New Fungicide, KNF 1002 in Cucumber and Pepper (신규 살균제 KNF 1002의 오이 및 고추 중 잔류특성)

  • Kim, Tae-Hwa;Lee, Jae-Yeong;Yu, Yong-Man;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.3
    • /
    • pp.227-232
    • /
    • 2003
  • This study was conducted to evaluate the terminal residue of a new fungicide, KNF 1002, in cucumber and pepper under greenhouse and field conditions. When a microemulsion formulation (20%) of KNF 1002 was applied once or twice during $1{\sim}7$ days before harvest, its terminal residue in cucumber ranged <$0.02{\sim}0.20\;mg/kg$ under greenhouse condition. In pepper, its figure recorded $0.31{\sim}0.79\;mg/kg$ and $0.11{\sim}0.28\;mg/kg$ under greenhouse and field conditions, respectively. Much higher level of terminal residues was observed in leaves than those in fruits in pepper, showing $7.38{\sim}25.20\;mg/kg$ and $0.11{\sim}1.99\;mg/kg$ under greenhouse and field conditions, respectively. Cultivation condition affected evidently the residue level in pepper harvests. Residual pattern of KNF 1002 seemed to be comparable to strobilurin fungicides currently used.

Residues of New Fungicide, Isopyrazam on Cucumber and Oriental Melon (Pyrazolecarboxamide계 살균제 Isopyrazam의 오이 및 참외 중 잔류특성)

  • Han, Ye-Hoon;Lee, Cheol-Yong;Park, Kwee-Doo;Park, Kwang-Wook;Lee, Kyu-Seung
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.1
    • /
    • pp.13-19
    • /
    • 2013
  • Isopyrazam, a new pyrazolecarboxamide fungicide developed by Syngenta, was highly active against foliar powdery mildew pathogens on cucumber, oriental melon and various vegetables. Following foliar applications on cucumber and oriental melon, crop residues were determined using high performance liquid chromatography. For all studies, limit of quantification was 0.02 mg/kg and minimum detection level was 2.0 ng and recoveries were 83.0-88.0% on cucumber, 92.4-104.5% on oriental melon. Isopyrazam was detected 0.07-0.72 mg/kg on cucumber and < 0.02-0.68 mg/kg on oriental melon, respectively. The TMDI (Theoretical Maximum Dailly Intake) of isopyrazam on cucumber and oriental melon was estimated to less than 1.765% of ADI.

Large-Scale Screening of the Plant Extracts for Antifungal Activity against the Plant Pathogenic Fungi

  • Song Hee, Lee;Young Taek, Oh;Do-Yeon, Lee;Eunbyeol, Cho;Byung Su, Hwang;Junhyun, Jeon
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.685-691
    • /
    • 2022
  • Plants produce chemicals of immense diversity that provide great opportunities for development of new antifungal compounds. In search for environment-friendly alternatives to the fungicide of current use, we screened plant extracts obtained from more than eight hundred plant materials collected in Korea for their antifungal activity against the model plant pathogenic fungus, Magnaporthe oryzae. This initial screening identified antifungal activities from the eleven plant extract samples, among which nine showed reproducibility in the follow-up screening. These nine samples were able to suppress not only M. oryzae but also other fungal pathogens. Interestingly, the plant extracts obtained from Actinostemma lobatum comprised five out of eight samples, and were the most effective in their antifungal activity. We found that butanol fraction of the A. lobatum extract is the most potent. Identification and characterization of antifungal substances in the A. lobatum extracts would provide the promising lead compounds for new fungicide.

Control Efficacy of a New Fungicide Fludioxonil on Lettuce Gray Mold According to Several Conditions (발병 조건에 따른 fludioxonil의 상추 잿빛곰팡이병 방제효과)

  • Choi, Gyung-Ja;Jang, Kyoung-Soo;Choi, Yong-Ho;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.217-221
    • /
    • 2009
  • Fludioxonil is derived from the antifungal compound pyrrolnitrin produced by Pseudomonas pyrrocinia and classified as a reduced-risk fungicide by the US EPA. The efficacy of fludioxonil for the control of lettuce gray mold caused by Botrytis cinerea was evaluated under several conditions such as growth stages of host, inoculum concentrations, and amounts of potato dextrose broth (PDB) included in spore suspension of B. cinerea. At 4-leaf stage of lettuce plants, fludioxonil applied at 2 ${\mu}g$/ml was more effective for the control of gray mold than at 5- and 6-leaf stages. However, fludioxonil at more than 10 ${\mu}g$/ml provided similar control activity in all growth stages of lettuce tested. The fungicide (10 and 50 ${\mu}g$/ml) also gave excellent control of gray mold on lettuce seedlings inoculated with spore suspensions of B. cinerea ($2.5{\times}10^5$ to $2{\times}10^6$ spores/ml). But, control efficacy of fludioxonil (2 ${\mu}g$/ml) was negatively correlated with inoculum concentration. Addition of PDB in spore suspension of B. cinerea resulted in higher disease severity than non-treated control. By inoculating spore suspension including 0.5% PDB, the fungicide gave the most control activity on the disease, followed by 1% and 2% PDB. The results suggest that fludioxonil has potential to control gray mold of lettuce, but the fungicide at a concentration having moderate activity may represent low control efficacy on the disease under some conditions.

A Synthesis of New 2-Iminothiazolines and Their Antifungal Activities (II) (새로운 2-이미노티아졸린 유도체의 합성과 항균활성 (II))

  • Nam, Kee-Dal;Choi, Gyung-Ja;Cho, Kwang-Yun;Hahn, Hoh-Gyu
    • Applied Biological Chemistry
    • /
    • v.41 no.6
    • /
    • pp.471-476
    • /
    • 1998
  • A synthesis and the screening of new 2-iminothiazolines (IV) of which structures are modified based on a lead compound, thiazoline for development of new agrochemical fungicide were described. Bromination of acetoacetanilides (I) which were prepared by the reaction of diketene with anilines gave the corresponding ${\gamma}-bromoacetoactanilide\;(II)$. Treatment of II with N-phenyl-N'-methyl thiourea (III) afforded IV, structure of which was confirmed by various spectroscopic methods. Antifungal activity of the new IV was tested against six kinds of typical plant diseases (in vivo). The IV with aromatic substituents showed remarkable activity against the Pyricuraria oryzae at 250 ppm in primary screening. The candidates with control value over 90% in primary screening were selected and further tested for second screening at lower concentrations. The IV which has an electron-withdrawing substituent such as halogen, especially fluorine in aryl group showed a higher activity as compared to those with electron-donating group and meta substituent was for optimal position.

  • PDF