• Title/Summary/Keyword: new displacement field

Search Result 235, Processing Time 0.028 seconds

Development of a Tensile Force Measurement Device for Long-term (인장력 장기 측정기 개발에 관한 연구)

  • Shin, Kyung Jae;Lee, Swoo Heon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.759-768
    • /
    • 2006
  • The turn-buckle inserted between tension members is a device adjusting a tensile force in tension member. However, the measurement of designed tensile force is impossible and the tensile force is determined based on the experience of field workers. The conventional turn-buckle might be used without any adjustment even though the tensile force has been changed for long term. To improve the disadvantages of conventional turn-buckles a turn-buckle which is measurable the tensile force is developed. In this study, the displacement to the lateral direction is induced by the deformation of curved elements if the tensile force is applied to the new type of turn-buckle that the straight elements are slightly curved. The total lateral displacement could be measured by using the micrometer or vernier-calipers. Trial devices for a measurable turn-buckle were made and tested. An theoretical study was also conducted to show the applicability, and parametric studies were conducted. The appropriate shape and capacity were determined by the parametric study.

Experimental Analysis of Prestressed Approach Slab Behavior (프리스트레스가 도입된 접속슬래브의 실험적 거동 분석)

  • Park, Hee-Beom;Eum, In-Sub;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.157-164
    • /
    • 2010
  • This research was conducted to analyze the behavior of Single-PTAS (Single Post-Tensioned Approach Slab) under tensioning and environmental loads by performing field tests when the demonstration Single-PTAS was being constructed. The temperature measurement sensors were installed at different depths, and the displacements in the approach slab under environmental loads and tensioning were measured using displacement transducers. As an experimental result, an abrupt change in the longitudinal displacement due to tensioning was not observed. The daily temperature change in the approach slab was negligible where the depth is over about 35cm. The temperature gradient in the approach slab adjacent to bridge was smaller than that adjacent to pavement. The patterns and magnitudes of vertical displacements were directly related to the temperature gradient at the measuring location. The behavior of Single-PTAS was very similar to that of concrete pavement. Therefore, a new design methodology for approach slabs is needed to include the pavement concept and to overcome drawback of current design procedures based on the simple beam concept.

Finite Element Formulation Based on Enhanced First-order Shear Deformation Theory for Thermo-mechanical Analysis of Laminated Composite Structures (복합소재 적층 구조물에 대한 열-기계적 거동 예측을 위한 개선된 일차전단변형이론의 유한요소 정식화)

  • Jun-Sik Kim;Dae-Hyeon Na;Jang-Woo Han
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.117-125
    • /
    • 2023
  • This paper proposes a new finite element formulation based on enhanced first-order shear deformation theory including the transverse normal strain effect via the mixed formulation (EFSDTM-TN) for the effective thermo-mechanical analysis of laminated composite structures. The main objective of the EFSDTM-TN is to provide an accurate and efficient solution in describing the thermo-mechanical behavior of laminated composite structures by systematically establishing the relationship between two independent fields (displacement and transverse stress fields) via the mixed formulation. Another key feature is to consider the thermal strain effect without additional unknown variables by introducing a refined transverse displacement field. In the finite element formulation, an eight-node isoparametric plate element is newly developed to implement the advantage of the EFSDTM-TN. Numerical solutions for the thermo-mechanical behavior of laminated composite structures are compared with those available in the open literature to demonstrate the numerical performance of the proposed finite element model.

Investigation of the mechanical behavior of functionally graded sandwich thick beams

  • Mouaici, Fethi;Bouadi, Abed;Bendaida, Mohamed;Draiche, Kada;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdelouahed;Ghazwani, Mofareh Hassan;Alnujaie, Ali
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.721-740
    • /
    • 2022
  • In this paper, an accurate kinematic model has been developed to study the mechanical response of functionally graded (FG) sandwich beams, mainly covering the bending, buckling and free vibration problems. The studied structure with homogeneous hardcore and softcore is considered to be simply supported in the edges. The present model uses a new refined shear deformation beam theory (RSDBT) in which the displacement field is improved over the other existing high-order shear deformation beam theories (HSDBTs). The present model provides good accuracy and considers a nonlinear transverse shear deformation shape function, since it is constructed with only two unknown variables as the Euler-Bernoulli beam theory but complies with the shear stress-free boundary conditions on the upper and lower surfaces of the beam without employing shear correction factors. The sandwich beams are composed of two FG skins and a homogeneous core wherein the material properties of the skins are assumed to vary gradually and continuously in the thickness direction according to the power-law distribution of volume fraction of the constituents. The governing equations are drawn by implementing Hamilton's principle and solved by means of the Navier's technique. Numerical computations in the non-dimensional terms of transverse displacement, stresses, critical buckling load and natural frequencies obtained by using the proposed model are compared with those predicted by other beam theories to confirm the performance of the proposed theory and to verify the accuracy of the kinematic model.

A new three-dimensional model for free vibration analysis of functionally graded nanoplates resting on an elastic foundation

  • Mahsa Najafi;Isa Ahmadi;Vladimir Sladek
    • Steel and Composite Structures
    • /
    • v.52 no.3
    • /
    • pp.273-291
    • /
    • 2024
  • This paper presents a three-dimensional displacement-based formulation to investigate the free vibration of functionally graded nanoplates resting on a Winkler-Pasternak foundation based on the nonlocal elasticity theory. The material properties of the FG nanoplate are considered to vary continuously through the thickness of the nanoplate according to the power-law distribution model. A general three-dimensional displacement field is considered for the plate, which takes into account the out-of-plane strains of the plate as well as the in-plane strains. Unlike the shear deformation theories, in the present formulation, no predetermined form for the distribution of displacements and transverse strains is considered. The equations of motion for functionally graded nanoplate are derived based on Hamilton's principle. The solution is obtained for simply-supported nanoplate, and the predicted results for natural frequencies are compared with the predictions of shear deformation theories which are available in the literature. The predictions of the present theory are discussed in detail to investigate the effects of power-law index, length-to-thickness ratio, mode numbers and the elastic foundation on the dynamic behavior of the functionally graded nanoplate. The present study presents a three-dimensional solution that is able to determine more accurate results in predicting of the natural frequencies of flexural and thickness modes of nanoplates. The effects of parameters that play a key role in the analysis and mechanical design of functionally graded nanoplates are investigated.

Optimization of construction support scheme for foundation pits at zero distance to both sides of existing stations based on the pit corner effect

  • Tonghua Ling;Xing Wu;Fu Huang;Jian Xiao;Yiwei Sun;Wei Feng
    • Geomechanics and Engineering
    • /
    • v.38 no.4
    • /
    • pp.381-395
    • /
    • 2024
  • With the wide application of urban subway tunnels, the foundation pits of new stations and existing subway tunnels are becoming increasingly close, and even zero-distance close-fitting construction has taken place. To optimize the construction support scheme, the existing tunnel's vertical displacement is theoretically analyzed using the two-stage analysis method to understand the action mechanism of the construction of zero-distance deep large foundation pits on both sides of the existing stations; a three-dimensional numerical calculation is also performed for further analysis. First, the additional stress field on the existing tunnel caused by the unloading of zero-distance foundation pits on both sides of the tunnel is derived based on the Mindlin stress solution of a semi-infinite elastic body under internal load. Then, considering the existing subway tunnel's joints, shear stiffness, and shear soil deformation effect, the tunnel is regarded as a Timoshenko beam placed on the Kerr foundation; a sixth-order differential control equation of the tunnel under the action of additional stress is subsequently established for solving the vertical displacement of the tunnel. These theoretical calculation results are then compared with the numerical simulation results and monitoring data. Finally, an optimized foundation pit support scheme is obtained considering the pit corner effect and external corner failure mode. The research shows a high consistency between the monitoring data,analytical and numerical solution, and the closer the tunnel is to the foundation pit, the more uplift deformation will occur. The internal corner of the foundation pit can restrain the deformation of the tunnel and the retaining structure, while the external corner can cause local stress concentration on the diaphragm wall. The proposed optimization scheme can effectively reduce construction costs while meeting the safety requirements of foundation pit support structures.

Feasibility of a new hybrid base isolation system consisting of MR elastomer and roller bearing

  • Hwang, Yongmoon;Lee, Chan Woo;Lee, Junghoon;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.323-335
    • /
    • 2020
  • Magnetorheological elastomer (MRE), a smart material, is an innovative material for base isolation system. It has magnetorheological (MR) effect that can control the stiffness in real-time. In this paper, a new hybrid base isolation system combining two electromagnetic closed circuits and the roller bearing is proposed. In the proposed system, the roller part can support the vertical load. Thus, the MRE part is free from the vertical load and can exhibit the maximum MR effect. The MRE magnetic loop is constructed in the free space of the roller bearing and forms a strong magnetic field. To demonstrate the performance of the proposed hybrid base isolation system, dynamic characteristic tests and performance evaluation were carried out. Dynamic characteristic tests were performed under the extensive range of strain of the MRE and the change of the applied current. Performance evaluation was carried out using the hybrid simulation under five earthquakes (i.e., El Centro, Kobe, Hachinohe, Northridge, and Loma Prieta). Especially, semi-active fuzzy control algorithm was applied and compared with passive type. From the performance evaluation, the comparison shows that the new hybrid base isolation system using fuzzy control algorithm is superior to passive type in reducing the acceleration and displacement responses of a target structure.

Measuring displacements of a railroad bridge using DIC and accelerometers

  • Hoag, Adam;Hoult, Neil A.;Take, W. Andy;Moreu, Fernando;Le, Hoat;Tolikonda, Vamsi
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.225-236
    • /
    • 2017
  • Railroad bridges in North America are an integral but aging part of the railroad network and are typically only monitored using visual inspections. When quantitative information is required for assessment, railroads often monitor bridges using accelerometers. However without a sensor to directly measure displacements, it is difficult to interpret these results as they relate to bridge performance. Digital Image Correlation (DIC) is a non-contact sensor technology capable of directly measuring the displacement of any visible bridge component. In this research, a railroad bridge was monitored under load using DIC and accelerometers. DIC measurements are directly compared to serviceability limits and it is observed that the bridge is compliant. The accelerometer data is also used to calculate displacements which are compared to the DIC measurements to assess the accuracy of the accelerometer measurements. These measurements compared well for zero-mean lateral data, providing measurement redundancy and validation. The lateral displacements from both the accelerometers and DIC at the supports were then used to determine the source of lateral displacements within the support system.

A novel four variable refined plate theory for wave propagation in functionally graded material plates

  • Fourn, Hocine;Atmane, Hassen Ait;Bourada, Mohamed;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.109-122
    • /
    • 2018
  • In This work an analysis of the propagation of waves of functionally graduated plates is presented by using a high order hyperbolic (HSDT) shear deformation theory. This theory has only four variables, which is less than the theory of first order shear deformation (FSDT). Therefore, a shear correction coefficient is not required. Unlike other conventional shear deformation theories, the present work includes a new field of displacement which introduces indeterminate integral variables. The properties of materials are supposed classified in the direction of the thickness according to two simple distributions of a power law in terms of volume fractions of constituents. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle. The analytical dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The convergence and the validation of the proposed theoretical numerical model are performed to demonstrate the efficacy of the model.

Plane-Strain Analysis of Auto-Body Panel Using the Rigid-Plastic Finite Element Method (강소성 유한요소법을 이용한 자동차 판넬 성형공정의 평면 변형해석)

  • 양동열;정완진;송인섭;전기찬;유동진;이정우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.169-178
    • /
    • 1991
  • A plane-strain finite element analysis of sheet metal forming is carried out by using the rigid-plastic FEM based on the membrane theory. The sheet material is assumed to possess normal anisotropy and to obey Hill's new yield criterion and its associated flow rule. A formulation of initial guess generation for the displacement field is derived by using the nonlinear elastic FEM. A method of contact treatment is proposed in which the skew boundary condition for arbitrarily shaped tools is successively used during iteration. In order to verify the validity of the developed method, plane-strain drawing with tools in analytic expression and with arbitrarily shaped tools is analyzed and compared with the published results. The comparison shows that the present method can be effectively used in the analysis of plane-strain sheet metal forming and thus provides the basis of approximate sectional analysis of panel-like sheet forming.