• 제목/요약/키워드: new displacement field

검색결과 235건 처리시간 0.024초

광파이버 트랜스듀서에 의한 맥파의 무침습적 검출 (Noninvasive Detection of Radial Pulse Wave by Fiber-Optic Transducer)

  • 박승환;정동명
    • 대한의용생체공학회:의공학회지
    • /
    • 제10권3호
    • /
    • pp.229-236
    • /
    • 1989
  • This paper describes an idea of design and construction for a radial pulse wave detector, In acquiring arterial pulse signal noninvasively, a new combinational fiber-optic transducer was used which has a detecting part and a sensing part. The mechanism of detecting part is composed of special form of structure that can detect changing pulses in contact with skin, and transmits arterial wall movements to the sensing part. It consists of elastic reflector and optical fibers, which are arranged in a fiber pair. Then, the intensity of the reflected light will be proportional to the displacement changed by inclined reflector. Using this transducer, it expected to make a clinically useful tool for arterial pulse wave diagnosis, especially on the application of "MACK- CHIN" in the field of Korean traditional medicine, since : his transducer has a simple structure and has an easy and clear signal acquisition method.on method.

  • PDF

레이저 간섭법을 이용한 면내 변형 측정 및 해석 (Measurement and Analysis of in-plane deformation by laser interferometry)

  • 노경완;유원재;김동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.91-95
    • /
    • 1997
  • ESPI(Electronic Speckle Pattern Interferometry) is new optical measuring method to be able to measure the surface deformations of engineering components and materials in industrial areas. Conventional measuring method of surface deformation such as the strain gauge have many demerits because it is contact and point-to-point measuring one. But ESPI that is non-contact, whole field measuring method can overcome previous disadvantages. The speckle pattern to be formed with interference phenomena of scattering light from rough surfaces illuminated by laser light have phase information of surface In this study we used this interference phenomena and the phase shifting method to measure the in- plane deformation, together with the use of digital equipment to process the information contained in the speckle pattern and to display consequent inter ferograms. Finally we obtained good agreement between the experimenta results and those of FEM..

  • PDF

An analytical solution for bending and vibration responses of functionally graded beams with porosities

  • Zouatnia, Nafissa;Hadji, Lazreg;Kassoul, Amar
    • Wind and Structures
    • /
    • 제25권4호
    • /
    • pp.329-342
    • /
    • 2017
  • This work presents a static and free vibration analysis of functionally graded metal-ceramic (FG) beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. A new displacement field containing integrals is proposed which involves only three variables. Based on the suggested theory, the equations of motion are derived from Hamilton's principle. This theory involves only three unknown functions and accounts for parabolic distribution of transverse shear stress. In addition, the transverse shear stresses are vanished at the top and bottom surfaces of the beam. The Navier solution technique is adopted to derive analytical solutions for simply supported beams. The accuracy and effectiveness of proposed model are verified by comparison with previous research. A detailed numerical study is carried out to examine the influence of the deflections, stresses and natural frequencies on the bending and free vibration responses of functionally graded beams.

Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT

  • Chikh, Abdelbaki;Tounsi, Abdelouahed;Hebali, Habib;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • 제19권3호
    • /
    • pp.289-297
    • /
    • 2017
  • This work presents a simplified higher order shear deformation theory (HSDT) for thermal buckling analysis of cross-ply laminated composite plates. Unlike the existing HSDT, the present one has a new displacement field which introduces undetermined integral terms and contains only four unknowns. Governing equations are derived from the principle of the minimum total potential energy. The validity of the proposed theory is evaluated by comparing the obtained results with their counterparts reported in literature. It can be concluded that the proposed HSDT is accurate and simple in solving the thermal buckling behavior of laminated composite plates.

A new shear deformation plate theory with stretching effect for buckling analysis of functionally graded sandwich plates

  • Mahmoud, S.R.;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제24권5호
    • /
    • pp.569-578
    • /
    • 2017
  • In this research work, a simple and accurate hyperbolic plate theory for the buckling analysis of functionally graded sandwich plates is presented. The main interest of this theory is that, in addition to incorporating the thickness stretching effect (${\varepsilon}_z{\not=}0$), the displacement field is composed only of 5 unknowns as the first order shear deformation theory (FSDT), instead of 6 like in the well-known "higher order shear and normal deformation theories". Thus, the number of unknowns and governing equations for the present theory is reduced, significantly facilitating engineering analysis. Governing equations are obtained by employing the principle of minimum total potential energy. Comparison studies are performed to verify the validity of present results. A numerical investigation has been conducted considering and neglecting the thickness stretching effects on the buckling of sandwich plates with functionally graded skins. It can be concluded that the present theory is not only accurate but also simple in predicting the buckling response of sandwich plates with functionally graded skins.

Thermomechanical interactions in a non local thermoelastic model with two temperature and memory dependent derivatives

  • Lata, Parveen;Singh, Sukhveer
    • Coupled systems mechanics
    • /
    • 제9권5호
    • /
    • pp.397-410
    • /
    • 2020
  • The present investigation is concerned with two-dimensional deformation in a homogeneous isotropic non local thermoelastic solid with two temperatures due to thermomechanical sources. The theory of memory dependent derivatives has been used for the study. The bounding surface is subjected to concentrated and distributed sources (mechanical and thermal sources). The Laplace and Fourier transforms have been used for obtaining the solution to the problem in the transformed domain. The analytical expressions for displacement components, stress components and conductive temperature are obtained in the transformed domain. For obtaining the results in the physical domain, numerical inversion technique has been applied. Numerical simulated results have been depicted graphically for explaining the effects of nonlocal parameter on the components of displacements, stresses and conductive temperature. Some special cases have also been deduced from the present study. The results obtained in the investigation should be useful for new material designers, researchers and physicists working in the field of nonlocal material sciences.

Single variable shear deformation model for bending analysis of thick beams

  • Abdelbari, Salima;Amar, Lemya Hanifi Hachemi;Kaci, Abdelhakim;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제67권3호
    • /
    • pp.291-300
    • /
    • 2018
  • In this work, a new trigonometry theory of shear deformation is developed for the static analysis of thick isotropic beams. The number of variables used in this theory is identical to that required in the theory of Euler-Bernoulli, sine function is used in the displacement field in terms of the coordinates of the thickness to represent the effects of shear deformation. The advantage of this theory is that shear stresses can be obtained directly from the relationships constitute, while respecting the boundary conditions at the free surface level of the beam. Therefore, this theory avoids the use of shear correction coefficients. The differential equilibrium equations are obtained using the principle of virtual works. A thick isotropic beam is considered, whose numerical study to show the effectiveness of this theory.

Stochastic finite element analysis of plate structures by weighted integral method

  • Choi, Chang-Koon;Noh, Hyuk-Chun
    • Structural Engineering and Mechanics
    • /
    • 제4권6호
    • /
    • pp.703-715
    • /
    • 1996
  • In stochastic analysis, the randomness of the structural parameters is taken into consideration and the response variability is obtained in addition to the conventional (mean) response. In the present paper the structural response variability of plate structure is calculated using the weighted integral method and is compared with the results obtained by different methods. The stochastic field is assumed to be normally distributed and to have the homogeneity. The decomposition of strain-displacement matrix enabled us to extend the formulation to the stochastic analysis with the quadratic elements in the weighted integral method. A new auto-correlation function is derived considering the uncertainty of plate thickness. The results obtained in the numerical examples by two different methods, i.e., weighted integral method and Monte Carlo simulation, are in a close agreement. In the case of the variable plate thickness, the obtained results are in good agreement with those of Lawrence and Monte Carlo simulation.

Influence of the porosities on the free vibration of FGM beams

  • Hadji, L.;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • 제21권3호
    • /
    • pp.273-287
    • /
    • 2015
  • In this paper, a free vibration analysis of functionally graded beam made of porous material is presented. The material properties are supposed to vary along the thickness direction of the beam according to the rule of mixture, which is modified to approximate the material properties with the porosity phases. For this purpose, a new displacement field based on refined shear deformation theory is implemented. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Based on the present refined shear deformation beam theory, the equations of motion are derived from Hamilton's principle. The rule of mixture is modified to describe and approximate material properties of the FG beams with porosity phases. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions. Illustrative examples are given also to show the effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams.

A refined exponential shear deformation theory for free vibration of FGM beam with porosities

  • Hadji, Lazreg;Daouadji, T. Hassaine;Bedia, E. Adda
    • Geomechanics and Engineering
    • /
    • 제9권3호
    • /
    • pp.361-372
    • /
    • 2015
  • In this paper, a refined exponential shear deformation theory for free vibration analysis of functionally graded beam with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. For this purpose, a new displacement field based on refined shear deformation theory is implemented. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Based on the present refined shear deformation beam theory, the equations of motion are derived from Hamilton's principle. The rule of mixture is modified to describe and approximate material properties of the FG beams with porosity phases. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions. Illustrative examples are given also to show the effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams.