• 제목/요약/키워드: neutron source

검색결과 312건 처리시간 0.027초

Calculation of Detector Positions for a Source Localizing Radiation Portal Monitor System Using a Modified Iterative Genetic Algorithm

  • Jeon, Byoungil;Kim, Jongyul;Lim, Kiseo;Choi, Younghyun;Moon, Myungkook
    • Journal of Radiation Protection and Research
    • /
    • 제42권4호
    • /
    • pp.212-221
    • /
    • 2017
  • Background: This study aims to calculate detector positions as a design of a radioactive source localizing radiation portal monitor (RPM) system using an improved genetic algorithm. Materials and Methods: To calculate of detector positions for a source localizing RPM system optimization problem is defined. To solve the problem, a modified iterative genetic algorithm (MIGA) is developed. In general, a genetic algorithm (GA) finds a globally optimal solution with a high probability, but it is not perfect at all times. To increase the probability to find globally optimal solution rather, a MIGA is designed by supplementing the iteration, competition, and verification with GA. For an optimization problem that is defined to find detector positions that maximizes differences of detector signals, a localization method is derived by modifying the inverse radiation transport model, and realistic parameter information is suggested. Results and Discussion: To compare the MIGA and GA, both algorithms are implemented in a MATLAB environment. The performance of the GA and MIGA and that of the procedures supplemented in the MIGA are analyzed by computer simulations. The results show that the iteration, competition, and verification procedures help to search for globally optimal solutions. Further, the MIGA is more robust against falling into local minima and finds a more reliably optimal result than the GA. Conclusion: The positions of the detectors on an RPM for radioactive source localization are optimized using the MIGA. To increase the contrast of the measurements from each detector, a relationship between the source and the detectors is derived by modifying the inverse transport model. Realistic parameters are utilized for accurate simulations. Furthermore, the MIGA is developed to achieve a reliable solution. By utilizing results of this study, an RPM for radioactive source localization has been designed and will be fabricated soon.

Incorporation of anisotropic scattering into the method of characteristics

  • Rahman, Anisur;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3478-3487
    • /
    • 2022
  • In this study, we incorporate an anisotropic scattering scheme involving spherical harmonics into the method of characteristics (MOC). The neutron transport solution in a light water reactor can be significantly improved because of the impact of an anisotropic scattering source with the MOC flat source approximation. Several problems are selected to verify the proposed scheme and investigate its effects and accuracy. The MOC anisotropic scattering source is based on the expansion of spherical harmonics with Legendre polynomial functions. The angular flux, scattering source, and cross section are expanded in terms of the surface spherical harmonics. Later, the polynomial is expanded to achieve the odd and even parity of the source components. Ultimately, the MOC angular and scalar fluxes are calculated from a combination of two sources. This paper presents various numerical examples that represent the hot and cold conditions of a reactor core with boron concentration, burnable absorbers, and control rod materials, with and without a reflector or baffle. Moreover, a small critical core problem is considered which involves significant neutron leakage at room temperature. We demonstrate that an anisotropic scattering source significantly improves solution accuracy for the small core high-leakage problem, as well as for practical large core analyses.

A practical subcritical rod worth measurement technique based on the improved neutron source multiplication method

  • Jiahe Bai;Chenghui Wan;Ser Gi Hong;Hongchun Wu
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1398-1406
    • /
    • 2024
  • The control rod worth is a key safety parameter required to be measured in commercial pressurized water reactors (PWRs). Conventionally, the control rod worth is measured after reaching the critical state, which occupies the considerable time in the zero-power physics test. In this study, an efficient control-rod worth measurement technique has been proposed based on the improved neutron-source multiplication method, which can be implemented with the source-range detector count rates in the subcritical states. Moreover, the noise reduction technique has been adopted to smooth the large fluctuation existing in the original signals. In order to verify the engineering performance of the proposed measurement technique, the measured source-range detector count rates during the rod withdrawal process before reaching critical state in a CNP1000 reactor have been employed. It demonstrated that almost all estimated results of control rod worth satisfy the engineering acceptance criteria, except one control rod with the relative difference over 10 %, which indicates the capability of the proposed method in estimating control rod worth.

하나로 냉중성자 유도관 시스템을 위한 인파일 플러그 및 주개폐기의 설계 (Design of the In-pile Plug Assembly and the Primary Shutter for the Neutron Guide System at HANARO)

  • 신진원;조영갑;조상진;류정수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1585-1589
    • /
    • 2007
  • The HANARO, a 30 MW multi-purpose research reactor in Korea, will be equipped with a neutron guide system, in order to transport cold neutrons from the neutron source to the neutron scattering instruments in the neutron guide hall near the reactor building. The neutron guide system of HANARO consists of the in-pile plug assembly with in-pile guides, the primary shutter with in-shutter guides, the neutron guides in the guide shielding room with dedicated secondary shutters, and the neutron guides connected to the instruments in the neutron guide hall. The functions of the in-pile plug assembly are to shield the reactor environment from a nuclear radiation and to support the neutron guides and maintain them precisely oriented. The primary shutter is a mechanical device to be installed just after the in-pile plug assembly, which stops neutron flux on demand. This paper describes the mechanical design of the in-pile plug assembly and the primary shutter for the neutron guide system at HANARO. The design of the guide shielding assembly for the primary shutter and the neutron guides is also presented.

  • PDF

Sensitivity simulation on isotopic fissile measurement using neutron resonances

  • Lee, YongDeok;Ahn, Seong-Kyu;Choi, Woo-Seok
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.637-643
    • /
    • 2022
  • Uranium and plutonium are required to be accounted in spent fuel head-end and major recovery area in pyro-process for safeguards purpose. The possibility of neutron resonance technique, as a nondestructive analysis, was simulated on isotopic fissile analysis for large scale process. Neutron resonance technique has advantage to distinguish uranium from plutonium directly in mixture. Simulation was performed on U235 and Pu239 assay in spent fuel and for scoping examination of assembly type. The resonance energies were determined for U235 and Pu239. The linearity in the neutron transmission was examined for the selected resonance energies. In addition, the limit for detection was examined by changing sample density, thickness and content for actual application. Several factors were proposed for neutron production and the moderated neutron source was simulated for effective and efficient transmission measurement. From the simulation results, neutron resonance technique is promising to analyze U235 and Pu239 for spent fuel assembly. An accurate fissile assay will contribute to an increased safeguards for the pyro-processing system and international credibility on the reuse of fissile materials in the fuel cycle.

Conceptual Study for the Moderator Selection of the Cold Neutron Source Facility for HANARO

  • Cho, Young-Sik;Jonghwa Chang;Park, Chang-Oong
    • Nuclear Engineering and Technology
    • /
    • 제30권2호
    • /
    • pp.140-147
    • /
    • 1998
  • Basic concept of a cold neutron source for a 30 MW heavy water moderated reactor (HANARO) is developed. The source is a cold bottle located in a vertical hole near the reactor core. Since the bottle does not have sufficient volume for cooling, the optimum liquid mixture ratio is studied between liquid hydrogen and liquid deuterium. We also studied the variation of the gain depending on the volume of the bottle. The calculation is performed by a coupled MCNP model and by a semi-analytic approach. For the current geometry, 80% liquid deuterium mixture with liquid hydrogen gives the highest gain at 10 A neutron wave.

  • PDF

연속에너지 중성자에 대한 천연 Sm의 중성자 포획단면적 측정 (Measurement of Energy Dependent Differential Neutron Capture Cross-section of Natural Sm by Using a Continuous Neutron Flux below)

  • 윤정란
    • 한국방사선학회논문지
    • /
    • 제10권5호
    • /
    • pp.337-341
    • /
    • 2016
  • 중성자에너지 영역 0.003 eV에서 10 eV에 대해 천연 Sm의 Sm(n,${\gamma}$) 반응에 대한 중성자 포획단면적을 측정하였다. 교토대학교 원자로실험소의 46-MeV 전자선형가속기에서 발생되는 전자의 광핵반응에 의한 중성자를 사용하였고 TOF 방법으로 측정하였다. 사용한 검출기는 12개의 BGO($Bi_4Ge_3O_{12}$) 섬광체로 구성되었고 이 검출장치로 Sm(n,${\gamma}$) 반응으로부터 나오는 즉발감마선을 측정하였다. 검출장치는 중성자 생성 위치로부터 $12.7{\pm}0.02m$ 위치에 설치되었으며 $^{10}B(n,{\alpha}{\gamma})^7Li$ 반응을 이용해 Sm 시료에 입사되는 중성자 선속을 구하였다. 또한 중성자 선속의 변화를 확인하기 위해 $BF_3$ 검출기로 모니터링 하였다. Sm(n,${\gamma}$) 반응단면적 측정결과는 BROND 2.2에 의한 평가결과와 J. C. Chou 및 V. N. Kononov 의 측정값과 비교하였다.

Experimental and theoretical study of BF3 detector response for thermal neutrons in reflecting materials

  • Nasir, Rubina;Aziz, Faiza;Mirza, Sikander M.;Mirza, Nasir M.
    • Nuclear Engineering and Technology
    • /
    • 제50권3호
    • /
    • pp.439-445
    • /
    • 2018
  • Experimental measurements of the response of $BF_3$ detector to a 3 Ci Am-Be neutron source for three different reflecting materials, i.e., aluminum, wood, and Perspex of varying thicknesses have been carried out. The varying contribution of wall effect to the response due to change in active volume of the detector has also been determined experimentally. Then, a Monte Carlo code has been developed for the calculation of the neutron response function of the $BF_3$ detector using source biasing and importance sampling. This code simulates the $BF_3$ detector response exposed to the neutron field in a three-dimensional source, detector, and reflecting medium configurations. The results of simulation have been compared with the corresponding experimental measurements and are found to be in good agreement. The experimental neutron albedo measurements for various values of Perspex thickness show saturating behavior, and results agree very well with the data obtained by Monte Carlo simulation.

Copper neutron transport libraries validation by means of a 252Cf standard neutron source

  • Schulc, Martin;Kostal, Michal;Novak, Evzen;Simon, Jan
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3151-3157
    • /
    • 2021
  • Copper is an important structural material in various nuclear energy applications, therefore the correct knowledge of copper cross sections is crucial. The presented paper deals with a validation of different copper transport libraries by means of activation of selected samples. An intense 252Cf(sf) source with a reference neutron spectrum was used as a neutron source. After irradiation, the samples were measured using a high purity germanium detector and the dosimeter reaction rates were inferred. These experimental data were compared with MCNP6 calculations using CENDL-3.1, JENDL-4.0, ENDF/B-VII.1, ENDF/B-VIII.0, JEFF-3.2 and JEFF-3.3 evaluated Cu transport libraries. The experiment specifically focuses on 58Ni(n,p)58Co, 93Nb(n,2n)92mNb, 197Au(n,g)198Au and 55Mn(n,g)56Mn dosimetry reactions. Evaluated activation cross sections of these dosimetric reactions were taken from the IRDFF-II library. The best library performance depends on the energy region of interest.

A Method to Estimate the Burnup Using Initial Enrichment, Cooling Time, Total Neutron Source Intensity and Gamma Source Activities in Spent Fuels

  • Sohee Cha;Kwangheon Park;Mun-Oh Kim;Jae-Hun Ko;Jin-Hyun Sung
    • 방사성폐기물학회지
    • /
    • 제21권3호
    • /
    • pp.303-313
    • /
    • 2023
  • Spent fuels (SFs) are stored in a storage pool after discharge from nuclear power plants. They can be transferred to for the further processes such as dry storage sites, processing plants, or disposal sites. One of important measures of SF is the burnup. Since the radioactivity of SF is strongly dependent on its burnup, the burnup of SF should be well estimated for the safe management, storage, and final disposal. Published papers about the methodology for the burnup estimation from the known activities of important radioactive sources are somewhat rare. In this study, we analyzed the dependency of the burnup on the important radiation source activities using ORIGEN-ARP, and suggested simple correlations that relate the burnup and the important source activities directly. A burnup estimation equation is suggested for PWR fuels relating burnup with total neutron source intensity (TNSI), initial enrichment, and cooling time. And three burnup estimation equations for major gamma sources, 137Cs, 134Cs, and 154Eu are also suggested.