• 제목/요약/키워드: neutron measurement

검색결과 252건 처리시간 0.023초

$KD_2PO_4$의 결정구조: 중성자와 X-선 회절에 의한 연구 (Crystal Structure of $KD_2PO_4$: Neutron and X-ray Diffraction Studies)

  • 김신애;심해섭;이창희
    • 한국결정학회지
    • /
    • 제11권3호
    • /
    • pp.162-166
    • /
    • 2000
  • KD₂PO₄ single crystals were grown from D₂O with reagent KH₂PO₄ and the crystal structure was determined by X-ray and neutron diffraction methods. The crystals are tetragonal at room temperature, I42d, with lattice parameters of a=7.4633(7), c=6.9785(5) Å and Z=4. Intensity data were collected on an Enraf-nonius CAD4 diffractometer with a graphite monochromated MoK/sub α/ radiation (λ=0.7107Å) and on the neutron four circle single crystal diffractometer with Ge(331) monochromated neutron beam (λ=0.997Å). The structure was refined by full-matrix least-square to final R and wR values of 0.030 and 0.072, respectively, for 204 observed reflections with I>2σ(I) by X-ray diffraction and to final R=0.041 and wR=0.096 for 144 observed relfecdtions by neutron diffraction. The O…O distance of 2.516(4)Å obtained by X-ray diffraction is the same as that of 2.515(4)Å by neutron diffraction. On the other hand, the O-D/H distance of 0.84(4)Å by X-ray diffraction is considerably shorter than 1.029(7) Åby neutron diffraction. Hydrogen and deuterium can be readily distinguished by neutrons. In this crystal 66% of H-positions were substituted by D and the rest 34% occupied by H. The phase transition temperature of DKDP obtained with deuteration levels is f193K. This value agrees fairly well with the result of DSC measurement. The nuclear density distribution by neutron diffraction provides an observation of the disordered state of D/H in KD₂PO₄ at room temperature.

  • PDF

Upgrade of Neutron Energy Spectrometer with Single Multilayer Bonner Sphere Using Onion-like Structure

  • Mizukoshi, Tomoaki;Watanabe, Kenichi;Yamazaki, Atsushi;Uritan, Akira;Iguchi, Tetsuo;Ogata, Tomohiro;Muramatsu, Takashi
    • Journal of Radiation Protection and Research
    • /
    • 제41권3호
    • /
    • pp.185-190
    • /
    • 2016
  • Background: In order to measure neutron energy spectra, the conventional Bonner Sphere Spectrometers (BSS) are widely used. In this spectrometer, several measurements with different size Bonner spheres are required. Operators should, therefore, place these spheres in several times to a measurement point where radiation dose might be relatively high. In order to reduce this effort, novel neutron energy spectrometer using an onion-like single Bonner sphere was proposed in our group. This Bonner sphere has multiple sensitive spherical shell layers in the single sphere. In this spectrometer, a band-shaped thermal neutron detection medium, which consists of a LiF-ZnS mixed powder scintillator sheet and a wavelength-shifting (WLS) fiber readout, was looped to each sphere at equal angular intervals. Amount of LiF neutron converter is reduced near polar region, where the band-shaped detectors are concentrated, in order to uniform the directional sensitivity. The LiF-ZnS mixed powder has an advantage of extremely high light yield. However, since it is opaque, scintillation photons cannot be collect uniformly. This type of detector shows no characteristic shape in the pulse height spectrum. Subsequently, it is difficult to set the pulse height discrimination level. This issue causes sensitivity fluctuation due to gain instability of photodetectors and/or electric modules. Materials and Methods: In order to solve this problem, we propose to replace the LiF-ZnS mixed powder into a flexible and Transparent RUbber SheeT type $LiCaAlF_6$ (TRUST LiCAF) scintillator. TRUST LiCAF scintillator can show a peak shape corresponding to neutron absorption events in the pulse height spectrum. Results and Discussion: We fabricated the prototype detector with five sensitive layers using TRUST LiCAF scintillator and conducted basic experiments to evaluate the directional uniformity of the sensitivity. Conclusion: The fabricated detector shows excellent directional uniformity of the neutron sensitivity.

경수로 사용후핵연료 건식저장용기 간 중성자 표면선속 간섭률 평가 (Evaluation of Neutron Flux Accounting for Shadowing Effect Among the Dry Storage Casks)

  • 곽민우;이신동;김광표
    • 방사선산업학회지
    • /
    • 제18권2호
    • /
    • pp.133-140
    • /
    • 2024
  • The Korean 2nd basic plan for management of high-level radioactive waste presented a plan to manage spent nuclear fuel through dry storage facilities in NPP on-site. For the construction and operation of the facility, it is necessary to develop the monitoring system of the integrity of spent nuclear fuel before operation. NUREG-1536 recommends that the theoretical cask array, typically in the 2×10 array, should account for shadowing effect among the dry storage casks. The objective of this study was to evaluate neutron flux accounting for shadowing effect among dry storage casks. The neutron release rate was evaluated using ORIGEN based on the design basis fuel condition. And the simulation of dry storage casks and evaluation of the shadowing effect were performed using MCNP. Shadowing effect of other dry storage casks was the highest at the center of the dry storage facility of the 2×10 array compared with the outside of the cask. The shadowing effect of neutron flux on the surface among the metal casks was approximately 18% at point 1, 23% at point 2, and 43% at point 3. For the concrete casks, the shadowing effect of neutron flux on the surface was approximately 46% at point 1, 51% at point 2, and 52% at point 3. This means that correction is necessary to monitor the integrity of spent nuclear fuel in each dry storage cask through evaluation of shadowing effect. The results of this study will be used for comparative analysis of neutron measurement data from spent nuclear fuels in dry storage cask. Additionally, the neutron flux evaluation procedure used in this study could be used as the basic data of safety assessment of dry storage cask and development of safety guide.

$CaSO_4:Dy$ 물질 기반 중성자 측정용 TL소자 개발 (Development of a TL pellet based on $CaSO_4:Dy$ for Neutron Measurement)

  • 양정선;이정일;김장렬;김봉환;소동섭
    • Journal of Radiation Protection and Research
    • /
    • 제31권3호
    • /
    • pp.129-134
    • /
    • 2006
  • 한국원자력연구소에서 개발한 개인선량계용 KCT-300 소자의 기반물질인 $CaSO_4:Dy$ TL 물질에 $^6Li$ 화합물을 첨가하여 열중성자 측정용 소자 (KCT-306)를 개발하였다. 본 논문에서는 KCT-306 소자를 제작하기 위한 최적 조건을 결정하였으며 개발한 소자와 상용화된 소자의 성능을 비교하였다. $CaSO_4:Dy$ TL 분말의 낟알 크기가 $45{\mu}m$ 일 경우 KCT-306 소자가 최적의 성능을 보였으며, 소자 제작 조건은 $CaSO_4:Dy$ TL 분말과 열중성자 반응 물질로 첨가되는 $^6Li$ 화합물, 그리고 접착매질인 인(P) 화합물의 최적 함량이 각각 20-40 wt%, 50-70 wt%, 그리고 20 wt% 이었다. 동 조건으로 제작한 KCT-306/KCT-300 소자와 상용화된 열중성자 측정용 소자, TLD-600/TLD-700, TLD-600H/TLD-700H(harshaw) 와의 성능을 비교하기 위하여 중수 감속구(직경 30cm.) $^{252}Cf$ 중성자 선원으로 조사시킨 후 감도를 측정하였다. KCT-306 소자는 TLD-600H/TLD-700H에 비해 중성자 및 감마 감도는 낮지만 중성자/감마 감도비는 4배 이상됨을 확인하였고 TLD-600/TLD-700보다는 중성자 및 감마 감도와 중성자/감마 감도비가 높음을 확인하였다.

2.5 MeV 이하 단색 중성자 표준장에 대한 중성자 실험실내의 산란 중성자 분포 전산모사 (MCNPX Simulation of Scattered Neutron Distribution in Experimental Room for the Neutron Reference Field of Monoenergetic Neutron below 2.5 MeV)

  • 박중헌;김기동
    • Journal of Radiation Protection and Research
    • /
    • 제36권2호
    • /
    • pp.59-63
    • /
    • 2011
  • 가속기 기반 중성자 표준장은 검출기 및 도시메터 교정, 핵자료 생산, 동위원소 생산등 에 필수적으로 필요한 기반 장비이다. 가속기 기반 중성자 표준장 실험실을 설계하는데 있어서 원하는 에너지의 직접적인 중성자 이외에 산란되어서 입사하는 산란 중성자를 줄이는 것은 매우 중요하다. 따라서 그러한 조건을 얻어내기 위하여 다양한 조건을 가정하여 MCNPX 모사계산을 수행하였다. 우선은 기존의 실험실 조건에서 양성자 운동방향인 0도 방향에 있는 중성자 Flux 측정용 공기로 이루어진 가상의 Chamber에 직접 입사하는 중성자 flux와 벽이나 바닥에 충돌을 한 후에 입사하는 간접적인 산란 중성자 flux를 각각 계산하였다. 그 결과 충돌 한 후에 0도 방향의 Chamber에 입사하는 산란 중성자 flux 중에 바닥에 충돌을 한 후 0도 방향의 Chamber로 입사하는 산란 중성자 flux가 가장 많다는 것을 알 수 있었다. 따라서 바닥의 콘크리트만을 없앴을 때와 콘크리트를 제거하고 땅을 1m 정도 파내려갔을 때를 가정하여 재계산을 하였고 그 결과 콘크리트를 없애고 땅을 1m 정도 파면 바닥에 충돌하고 Chamber로 들어오는 산란 중성자 flux가 다른 곳에 충돌하고 들어오는 것보다 낮아지는 정도까지 줄어드는 것을 알 수 있었다.

굴곡측정법을 이용한 극후판 용접부 잔류응력분포 정량분석 (Characterization of residual stress distribution of thick steel weld by contour method)

  • 김동규;우완측;강윤희
    • Journal of Welding and Joining
    • /
    • 제33권1호
    • /
    • pp.24-29
    • /
    • 2015
  • Residual stresses arising from the materials processing such as welding and joining affect significantly the structural integrity depending on the external loading condition. The quantitative measurement of the residual stresses is of great importance in order to characterize the effects of the residual stresses on the structural safety. In this paper, we introduce a newly devised destructive technique, the contour method (CM), which is applied for the measurements of the residual stress distributions through the thickness of a 80 mm thick steel weld. Residual stresses are evaluated from the contour, which is the normal displacement on a cut surface produced by the relaxation of residual stresses, using a finite element model. The CM provides a two-dimensional map of the residual stresses normal to the cut surface. The CM developed in the present study was validated in comparison with the residual stress distribution determined by a well-established neutron-diffraction residual stress instrument (RSI) instrumented in HANARO neutron research reactor.

Fabrication of Prototype vuv Spectrometer & Liquid Target System Containing Hydrogen

  • 이윤만;김재훈;김진곤;안병남
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.586-586
    • /
    • 2012
  • The vuv spectrometer for ITER main plasma measurement is designed as a five-channel spectral system. To develop and verify the design, a two-channel prototype system was fabricated with No. 3 (14.4-31.8 nm) and No. 4 (29.0-60.0 nm) among the five channels. For test of the prototype system, a hollow cathode lamp is used as a light source. The system is composed of a collimating mirror to collect the light from source to slit, and two holographic diffraction gratings with toroidal geometry to diffract and also to collimate the light from the common slit to detectors. The overall system performance was verified by comparing the measured spectral resolutions with the calculated spectral resolutions. And we also have developed liquid jet target system. This study is about a neutron generator, which is designed to overcome many of the limitations of traditional beam-target neutron generators by utilizing a liquid target. One of the most critical aspects of the beam-target neutron generator is the target integrity under the beam exposure. A liquid target can be a good solution to overcome damage to the target such as target erosion and depletion of hydrogen isotopes in the active layer, especially for the ones operating at high neutron fluxes and maintained relatively thin with no need for water cooling. In this study, liquid target containing hydrogen has been developed and tested.

  • PDF

Study of n/γ discrimination using 3He proportional chamber in high gamma-ray fields

  • Choi, Joonbum;Park, Junesic;Son, Jaebum;Kim, Yong Kyun
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.263-268
    • /
    • 2019
  • The $^3He$ proportional chamber is widely used for neutron measurement owing to its high neutron detection efficiency and simplicity for gamma-ray rejection. In general, the neutron and gamma-ray signals obtained from the $^3He$ proportional chamber can be easily separated by the difference in the pulse heights. However, for a high gamma-ray field, the gamma-ray signal cannot be precisely eliminated by the pulse height due to gamma-ray pulse pileup which causes the pulse height of gamma-ray pulse to increase and making the pulses due to neutrons and gamma rays indistinguishable. In this study, an improved algorithm for $n/{\gamma}$ discrimination using a parameter, which is the ratio of the rise time to the pulse height, is proposed. The $n/{\gamma}$ discrimination performance of the algorithm is evaluated by applying it to $^{252}Cf$ neutron signal separation from various gamma-ray exposure rate levels ranging 0.1-5 R/h. The performance is compared to that of the conventional pulse-height analysis method in terms of the gamma elimination ratio. The suggested algorithm shows better performance than the conventional one by 1.7% (at 0.1 R/h) to 70% (at 5 R/h) for gamma elimination.

Neutron dose rate analysis of the new CONSTOR® storage cask for the RBMK-1500 spent nuclear fuel

  • Narkunas, Ernestas;Smaizys, Arturas;Poskas, Povilas;Naumov, Valerij;Ekaterinichev, Dmitrij
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1869-1877
    • /
    • 2021
  • This paper presents the neutron dose rate analysis of the new CONSTOR® RBMK-1500/M2 storage cask intended for the spent nuclear fuel storage at Ignalina Nuclear Power Plant in Lithuania. These casks are designed to be stored in a new "closed" type interim storage facility, with the capacity to store up to 202 CONSTOR® RBMK-1500/M2 casks. In 2016 y, the "hot trials" of this new facility were conducted and 10 CONSTOR® RBMK-1500/M2 casks loaded with the spent nuclear fuel were transported to the dedicated storage places in this facility. During "hot trials", the dose rate measurements of the CONSTOR® RBMK-1500/M2 casks were performed as the dose rate is one of the critical parameter to control and it must be below design (and safety) criteria. Therefore, having the actual data of the spent nuclear fuel characteristics, the neutron dose rate modeling of the CONSTOR® RBMK-1500/M2 cask loaded with this particular fuel was also performed. Neutron dose rate modeling was performed using MCNP 5 computer code with very detailed geometrical representation of the cask and the fuel. The obtained modeling results were compared with the measurement results and it was revealed, that modeling results are generally in good agreement with the measurements.