• Title/Summary/Keyword: neutron measurement

Search Result 255, Processing Time 0.031 seconds

DEVELOPMENT OF LEAD SLOWING DOWN SPECTROMETER FOR ISOTOPIC FISSILE ASSAY

  • Lee, YongDeok;Park, Chang Je;Ahn, Sang Joon;Kim, Ho-Dong
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.837-846
    • /
    • 2014
  • A lead slowing down spectrometer (LSDS) is under development for analysis of isotopic fissile material contents in pyro-processed material, or spent fuel. Many current commercial fissile assay technologies have a limitation in accurate and direct assay of fissile content. However, LSDS is very sensitive in distinguishing fissile fission signals from each isotope. A neutron spectrum analysis was conducted in the spectrometer and the energy resolution was investigated from 0.1eV to 100keV. The spectrum was well shaped in the slowing down energy. The resolution was enough to obtain each fissile from 0.2eV to 1keV. The detector existence in the lead will disturb the source neutron spectrum. It causes a change in resolution and peak amplitude. The intense source neutron production was designed for ~E12 n's/sec to overcome spent fuel background. The detection sensitivity of U238 and Th232 fission chamber was investigated. The first and second layer detectors increase detection efficiency. Thorium also has a threshold property to detect the fast fission neutrons from fissile fission. However, the detection of Th232 is about 76% of that of U238. A linear detection model was set up over the slowing down neutron energy to obtain each fissile material content. The isotopic fissile assay using LSDS is applicable for the optimum design of spent fuel storage to maximize burnup credit and quality assurance of the recycled nuclear material for safety and economics. LSDS technology will contribute to the transparency and credibility of pyro-process using spent fuel, as internationally demanded.

Measurement of Neutron Production Double-differential Cross-sections on Carbon Bombarded with 430 MeV/Nucleon Carbon Ions

  • Itashiki, Yutaro;Imahayashi, Youichi;Shigyo, Nobuhiro;Uozumi, Yusuke;Satoh, Daiki;Kajimoto, Tsuyoshi;Sanami, Toshiya;Koba, Yusuke;Matsufuji, Naruhiro
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.344-349
    • /
    • 2016
  • Background: Carbon ion therapy has achieved satisfactory results. However, patients have a risk to get a secondary cancer. In order to estimate the risk, it is essential to understand particle transportation and nuclear reactions in the patient's body. The particle transport Monte Carlo simulation code is a useful tool to understand them. Since the code validation for heavy ion incident reactions is not enough, the experimental data of the elementary reaction processes are needed. Materials and Methods: We measured neutron production double-differential cross-sections (DDXs) on a carbon bombarded with 430 MeV/nucleon carbon beam at PH2 beam line of HIMAC facility in NIRS. Neutrons produced in the target were measured with NE213 liquid organic scintillators located at six angles of 15, 30, 45, 60, 75, and $90^{\circ}$. Results and Discussion: Neutron production double-differential cross-sections for carbon bombarded with 430 MeV/nucleon carbon ions were measured by the time-of-flight method with NE213 liquid organic scintillators at six angles of 15, 30, 45, 60, 75, and $90^{\circ}$. The cross sections were obtained from 1 MeV to several hundred MeV. The experimental data were compared with calculated results obtained by Monte Carlo simulation codes PHITS, Geant4, and FLUKA. Conclusion: PHITS was able to reproduce neutron production for elementary processes of carbon-carbon reaction precisely the best of three codes.

Determination of Neutron Absorption Fraction Factor in Manganese Sulfate Bath System (황산망간 용액조 장치의 중성자 흡수분율 보정인자 결정)

  • Lee, Kyung-Ju;Park, Kil-Oung;Hwang, Sun-Tae;Lee, Kun-Jai
    • Nuclear Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.12-17
    • /
    • 1989
  • The correction factor of neutron fraction absorbed by $^{55}$ Mn in the MnSO$_4$ bath was determined for the absolute measurement of neutron emission rate by using the solution circulation-type manganese sulfate bath system. For the determination of this correction factor, I/f, the atomic number desnsity and the effective neutron capture cross section data of Mn, S and impurity elements in the MnSO$_4$ solution were determined. For the atomic number density determination, the MnSO$_4$ solution concentration was determined by using the volumetric EDTA titration and gravimetric method. The impurity contents were analyzed by using the ICP method. For the calculation of effective neutron capture cross sections, a FORTRAN computer program EASCAL was developed in this study. in which Westcott's parameters and Axton's empirical relations are used.

  • PDF

A Study on the Neutron in Radiation Treatment System and Related Facility (방사선치료 장치 및 관련시설에서의 산란 중성자에 관한 연구)

  • Kim Dae-Sup;Kim Jeong-Man;Lee Hee-Seok;Lim Ra-Seung;Kim You-Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.141-145
    • /
    • 2005
  • Purpose : It is known that the neutron is generally generated from the photon, its energy is larger than 10 MV. The neutron is leaked in the container inspection system installed at the customs though its energy is below 9 MV. It is needed that the spacial effect of the neutrons released from radiation treatment machine, linac, installed in the medical canter. Materials and Methods : The medical linear accelerator(Clinac 1800, varian, USA) was used in the experiment. Measuring neutron was used bubble detector(Bubble detector, BDPND type, BTI, Canada) which was created bubble by neutron. The bubble detector is located on the medical linear accelerator outskirt in three different distance, 30, 50, 120 cm and upper, lower four point from the iso-center. In addition, for effect on protect material we have measured eight points which are 50 cm distance from iso-center. The SAD(source-axis-distance), distance from photon source to iso-center, is adjusted to 100 cm and the field size is adjusted to $15{\times}15cm^2$. Irradiate 20 MU and calculate the dose rate in mrem/MU by measuring the number of bubble. Results : The neutron is more detected at 5 position in 30, 50 cm, 7 position in 120 cm and with wedge, and 2 position without mount. Conclusion : Though detection position is laid in the same distance in neutron measurement, the different value is shown in measuring results. Also, neutron dose is affected by the additional structure, the different value is obtained in each measurement positions. So, it is needed to measure and evaluate the neutron dose in the whole space considering the effect of the distance, angular distribution and additional structure.

  • PDF

Comparative Study of Soil Moisture Measurement Methods (토양수분 측정방법 비교 연구 -중성자법과 TDR법을 중심으로-)

  • 장민원;정하우;최진용
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.65-70
    • /
    • 1998
  • Soil moisture measuring is important for irrigation scheduling of upland crops, estimation of evapotranspiration, and hydrologic modeling. Hence, the comparative study was implemented for the soil moisture measuring instruments, Neutron probe and TDR with soil sampling methods, and the result was represented.

  • PDF