• Title/Summary/Keyword: neutron measurement

Search Result 252, Processing Time 0.021 seconds

Fast Neutron Beam Dosimetry (속중성자선의 선량분포에 관한 연구)

  • Lee Hyo Nam;Ji Young Hoon;Ji Kwang Soo;Lee Dong Han
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.9 no.1
    • /
    • pp.71-81
    • /
    • 1997
  • I. Objective and Importance of the Project We have been using MC-50 cyclotron and NT-50 neutron therapy machine for treating cancer patients since 1986 at Korea Cancer Center Hospital. It is mandatory to measure accurately the dose distribution and the total absorbed dose of fast neutron for putting it to the clinical use. At present the methods of measurement of fast neutron are proposed largely by American Associations of Physicists in Medicine (Task Group 18), European Clinical Neutron Dosimetry Group, and International Commission on Radiation Units and Measurements. The complexity of measurement, however, induce the methodological differences between them. In our study, therefore, we tried to establish a unique technique of measurement by means of measuring the emitted doses and the dose distribution of fast neutron beam from neutron therapy machine, and to invent a standard method of measurement adequate to our situation. II. Scope and Contents of the Project For establishing a unique technique of measurement and inventing a standard method of measurement of fast neutron beam, 1. to grasp the physical characteristics of neutron therapy machine 2. to study the principles for measrement of fast neutron beam 3. to get the dose distribution (dose rate, percent-depth dose, flatness etc) throught the actual measurement 4. to compare our data with those being cited world-widely.

  • PDF

A Study On Hardware Design for High Speed High Precision Neutron Measurement (고속 고정밀 중성자 측정을 위한 하드웨어 설계에 관한 연구)

  • Jang, Kyeong-Uk;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.61-67
    • /
    • 2016
  • In this paper, a hardware design method is proposed for high speed high precision neutron radiation measurements. Our system is fabricated to use a high performance A/D Converter for digital data conversion of high precision and high speed analog signals. Using a neutron sensor, incident neutron radiation particles are detected; a precision microcurrent measurement module is also included: this module allows for more precise and rapid neutron radiation measurement design. The high speed high precision neutron measurement hardware system is composed of the neutron sensor, variable high voltage generator, microcurrent precision measurement component, embedded system, and display screen. The neutron sensor detects neutron radiation using high density polyethylene. The variable high voltage generator functions as a 0 ~ 2KV variable high voltage generator that is robust against heat and noise; this generator allows the neutron sensor to perform normally. The microcurrent precision measurement component employs a high performance A/D Converter to precisely and swiftly measure the high precision high speed microcurrent signal from the neutron sensor and to convert this analog signal into a digital one. The embedded system component performs multiple functions including neutron radiation measurement for high speed high precision neutron measurements, variable high voltage generator control, wired and wireless communications control, and data recording. Experiments using the proposed high speed high precision neutron measurement hardware shows that the hardware exhibits superior performance compared to that of conventional equipment with regard to measurement uncertainty, neutron measurement rate, accuracy, and neutron measurement range.

Sensitivity simulation on isotopic fissile measurement using neutron resonances

  • Lee, YongDeok;Ahn, Seong-Kyu;Choi, Woo-Seok
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.637-643
    • /
    • 2022
  • Uranium and plutonium are required to be accounted in spent fuel head-end and major recovery area in pyro-process for safeguards purpose. The possibility of neutron resonance technique, as a nondestructive analysis, was simulated on isotopic fissile analysis for large scale process. Neutron resonance technique has advantage to distinguish uranium from plutonium directly in mixture. Simulation was performed on U235 and Pu239 assay in spent fuel and for scoping examination of assembly type. The resonance energies were determined for U235 and Pu239. The linearity in the neutron transmission was examined for the selected resonance energies. In addition, the limit for detection was examined by changing sample density, thickness and content for actual application. Several factors were proposed for neutron production and the moderated neutron source was simulated for effective and efficient transmission measurement. From the simulation results, neutron resonance technique is promising to analyze U235 and Pu239 for spent fuel assembly. An accurate fissile assay will contribute to an increased safeguards for the pyro-processing system and international credibility on the reuse of fissile materials in the fuel cycle.

MEASUREMENT OF THE D-D NEUTRON GENERATION RATE BY PROTON COUNTING

  • Kim, In-Jung;Jung, Nam-Suk;Choi, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.299-304
    • /
    • 2008
  • A detection system was set up to measure the neutron generation rate of a recently developed D-D neutron generator. The system is composed of a Si detector, He-3 detector, and electronics for pulse height analysis. The neutron generation rate was measured by counting protons using the Si detector, and the data was crosschecked by counting neutrons with the He-3 detector. The efficiencies of the Si and He-3 detectors were calibrated independently by using a standard alpha particle source $^{241}Am$ and a bare isotopic neutron source $^{252}Cf$, respectively. The effect of the cross-sectional difference between the D(d,p)T and $D(d,n)^3He$ reactions was evaluated for the case of a thick target. The neutron generation rate was theoretically corrected for the anisotropic emission of protons and neutrons in the D-D reactions. The attenuations of neutron on the path to the He-3 detector by the target assembly and vacuum flange of the neutron generator were considered by the Monte Carlo method using the MCNP 4C2 code. As a result, the neutron generation rate based on the Si detector measurement was determined with a relative uncertainty of ${\pm}5%$, and the two rates measured by both detectors corroborated within 20%.

CHARACTERISTICS OF THE KAERI NEUTRON REFERENCE FIELDS FOR THE CALIBRATION OF NEUTRON MONITORING INSTRUMENTS

  • Kim, Bong-Hwan;Kim, Jang-Lyul;Chang, Si-Young;Cho, Gyu-Seong
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.243-248
    • /
    • 2001
  • Neutron reference fields of Korea Atomic Energy Research Institute (KAERI) for calibrating neutron measuring devices to be used in radiation workplace monitoring consist of two kinds of neutron spectra, the direct and the scattered neutron fields, which are produced by using radionuclide neutron sources, 252Cf and 241AmBe sources. Necessary parameters for calibration such as the anisotropy factor of each neutron source and the room-scattered fraction of some neutron surveymeters in the KAERI calibration facility were determined by calculation or measurement. Spectral measurement of scattered neutron fields were performed at each reference calibration point using a Bonner Multi-sphere Spectrometer (BMS) and the dosimetric quantities for calibration also estimated from the neutron energy spectra which were unfolded using the BUNKI code.

  • PDF

Calibration of digital wide-range neutron power measurement channel for open-pool type research reactor

  • Joo, Sungmoon;Lee, Jong Bok;Seo, Sang Mun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.203-210
    • /
    • 2018
  • As the modernization of the nuclear instrumentation system progresses, research reactors have adopted digital wide-range neutron power measurement (DWRNPM) systems. These systems typically monitor the neutron flux across a range of over 10 decades. Because neutron detectors only measure the local neutron flux at their position, the local neutron flux must be converted to total reactor power through calibration, which involves mapping the local neutron flux level to a reference reactor power. Conventionally, the neutron power range is divided into smaller subranges because the neutron detector signal characteristics and the reference reactor power estimation methods are different for each subrange. Therefore, many factors should be considered when preparing the calibration procedure for DWRNPM channels. The main purpose of this work is to serve as a reference for performing the calibration of DWRNPM systems in research reactors. This work provides a comprehensive overview of the calibration of DWRNPM channels by describing the configuration of the DWRNPM system and by summarizing the theories of operation and the reference power estimation methods with their associated calibration procedure. The calibration procedure was actually performed during the commissioning of an open-pool type research reactor, and the results and experience are documented herein.

Measurement of the applicability of various experimental materials in a medically relevant reactor neutron source part two: Study of H3BO3 and B-DTPA under neutron irradiation

  • Ezddin Hutli;Peter Zagyvai
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2419-2431
    • /
    • 2023
  • Experiments related to Boron Neutron Capture Therapy (BNCT) accomplished at the Institute of Nuclear Techniques (INT), Budapest University of Technology and Economics (TUB) are presented. Relevant investigations are required before designing BNCT for vivo applications. Samples of relevant boron compounds (H3BO3, BDTPA) usually employed in BNCT were investigated with neutron beam. Channel #5 in the research reactor (100 kW) of INT-TUB provides the neutron beam. Boron samples are mounted on a carrier for neutron irradiation. The particle attenuation of several carrier materials was investigated, and the one with the lowest attenuation was selected. The effects of boron compound type, mass, and compound phase state were also investigated. To detect the emitted charged particles, a traditional ZnS(Ag) detector was employed. The neutron beam's interaction with the detector-detecting layer is investigated. Graphite (as a moderator) was employed to change the neutron beam's characteristics. The fast neutron beam was also thermalized by placing a portable fast neutron source in a paraffin container and irradiating the H3BO3. The obtained results suggest that the direct measurement approach appears to be insufficiently sensitive for determining the radiation dose committed by the Alpha particles from the 10B (n,α) reaction. As a result, a new approach must be used.

Neutron irradiation impact on structural and electrical properties of polycrystalline Al2O3

  • Sunil Kumar;Sejal Shah;S. Vala;M. Abhangi;A. Chakraborty
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.402-409
    • /
    • 2024
  • High energy neutron irradiations impact on structural and electrical properties of alumina are studied with particular emphasis on real time in-situ radiation induced conductivity measurement in low flux region. Polycrystalline Al2O3 samples are subjected to high energy neutrons produced from D-T neutron generator and Am-Be neutron source. 14 MeV neutrons from D-T generator are chosen to study the role of fast neutron irradiation in the structural modification of samples. Real time in-situ electrical measurement is performed to investigate the change in insulation resistance of Al2O3 due to radiation induced conductivity at low flux regime. During neutron irradiation, a significant transient decrease in insulation resistance is observed which recovers relative higher value just after neutron exposure is switched off. XRD results of 14 MeV neutron irradiated samples suggest annealing effect. Impact of relatively low energy neutrons on the structural properties is also studied using Am-Be neutrons. In this case, clustering is observed on the sample surface after prolonged neutron exposure. The structural characterizations of pristine and irradiated Al2O3 samples are performed using XRD, SEM, and EDX. The results from these characterizations are analysed and interpreted in the manuscript.

Development of neutron time-of-flight measurement system for 1.7-MV tandem proton accelerator with lithium target

  • Lim, Soobin;Kim, Donghwan;Kang, Jin-Goo;Dang, Jeong-Jeung;Lee, Pilsoo;Kim, Geehyun;Chung, Kyoung-Jae;Hwang, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.437-441
    • /
    • 2022
  • In this study, we developed a neutron time-of-flight (nTOF) measurement system for a 1.7-MV tandem proton accelerator with a target covered with 300-nm-thick lithium (Li) layer. With implementation of beam chopping module after its ion source, the accelerator is configured to operate in pulsed-beam mode with a pulse width <50 ns at 20-kHz repetition rate. This enables the gamma flash-type nTOF measurement system to identify the neutron generated with 3-MeV proton beam energy. The nTOF system consists of a 30" cylindrical NaI(Tl) and four stilbene scintillation detectors. The NaI(Tl) scintillator is placed 50 cm from the Li target to measure the time of beam irradiation on the target, and the stilbene detectors are placed 2 and 2.4 m away to measure nTOF at each location. The nTOF system successfully measured the generated neutron energy at irradiated proton energies of 2.6 and 3.0 MeV with an average energy resolution of 15%.

Conceptual design of neutron measurement system for input accountancy in pyroprocessing

  • Lee, Chaehun;Seo, Hee;Menlove, Spencer H.;Menlove, Howard O.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1022-1028
    • /
    • 2020
  • One of the possible options for spent-fuel management in Korea is pyroprocessing, which is a process for electrochemical recycling of spent nuclear fuel. Nuclear material accountancy is considered to be a safeguards measure of fundamental importance, for the purposes of which, the amount of nuclear material in the input and output materials should be measured as accurately as possible by means of chemical analysis and/or non-destructive assay. In the present study, a neutron measurement system based on the fast-neutron energy multiplication (FNEM) and passive neutron albedo reactivity (PNAR) techniques was designed for nuclear material accountancy of a spent-fuel assembly (i.e., the input accountancy of a pyroprocessing facility). Various parameters including inter-detector distance, source-to-detector distance, neutron-reflector material, the structure of a cadmium sleeve around the close detectors, and an air cavity in the moderator were investigated by MCNP6 Monte Carlo simulations in order to maximize its performance. Then, the detector responses with the optimized geometry were estimated for the fresh-fuel assemblies with different 235U enrichments and a spent-fuel assembly. It was found that the measurement technique investigated here has the potential to measure changes in neutron multiplication and, in turn, amount of fissile material.