• Title/Summary/Keyword: neutrase

Search Result 119, Processing Time 0.031 seconds

Antioxidant and ACE Inhibiting Activities of the Rockfish Sebastes hubbsi Skin Gelatin Hydrolysates Produced by Sequential Two-step Enzymatic Hydrolysis

  • Kim, Hyung-Jun;Park, Kwon-Hyun;Shin, Jun-Ho;Lee, Ji-Sun;Heu, Min-Soo;Lee, Dong-Ho;Kim, Jin-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • This study was conducted to obtain hydrolysates with potent antioxidative activity from rockfish skin gelatin. Gelatin was extracted under high temperature/high pressure using a two-step enzymatic hydrolysis with commercial enzymes such as Alcalase, Flavourzyme, Neutrase, and Protamex. The second rockfish-skin gelatin hydrolysate (SRSGH) was prepared by further incubating the first gelatin hydrolysate (FRSGH), which had been hydrolyzed with Alcalase for 1-h (FRSGH-A1), with Flavourzyme for 2-h (SRSGH-F2). The second gelatin hydrolysate showed higher antioxidative activity of 3.72 as measured by a Metrohm Rancimat and superior angiotensin I-converting enzyme (ACE) inhibiting activity of 0.82 mg/mL. Compared with the gelatin, the relative proportion in SRSGH-F2 was markedly decreased in the 100-kDa peak, whereas it was increased in that less than 100-kDa. The amino acid composition of SRSGH-F2 was rich in glycine (25.9%), proline (10.8%), alanine (9.1%), and glutamic acid (9.1%). In contrast, it was poor in cystine (not detected), methionine (1.6%), tyrosine (0.4%), hydroxylysine (0.9%), and histidine (0.9%). In recent years, demand for natural functional foods has been increasing, and SRSGH-F2 can be used as a functional food ingredient in the food industries. However, further detailed studies on SRSGH-F2 with regard to its antioxidant activity in vivo and the various antioxidant mechanisms are needed.

Improvement on Yield and Functional Properties of Autoclave-Treated Salmon Frame Extracts using Commercial Enzymes (효소 처리에 의한 고온가압 연어 frame 추출물의 수율 및 건강 기능성 개선)

  • Heu, Min-Soo;Ji, Seong-Gil;Koo, Jae-Geun;Kwon, Jae-Seok;Han, Byung-Wook;Kim, Jeong-Gyun;Kim, Hyung-Jun;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.6
    • /
    • pp.537-544
    • /
    • 2009
  • This study was conducted to improve yield and functional properties of autoclave-treated salmon frame extracts (SFETA) using commercial enzymes (Alcalase 2.4 L FG, Flavourzyme 500 MG, Neutrase 0.8 L and Protamex 1.5 MG). Yield and angiotensin I converting enzyme (ACE) inhibitory activity of all enzymatic hydrolysates improved compared to those of control (undigested extracts), which were the highest in hydrolysates incubated with Protamex 1.5 MG for 4 hrs (P4-treated hydrolysates) and 2 hrs (P2-treated hydrolysates), respectively. However, antioxidant activities of all enzymatic hydrolysates showed less than 29%. According to the trichloroacetic acid soluble-N, volatile component intensity and sensory evaluation, when compared to control, taste of P4-treated hydrolysates improved, while its fish odor strongly smelt. Therefore, for efficient use of P4-hydrolysates, the fish odor should be improved by Maillard reaction of extracts or pre-treatment of salmon frame.

Antioxidant activity of extracts from Blueberry (블루베리 추출물의 항산화 활성)

  • O, Jae-Yeong;Kang, Na-Lae;Kang, Seong-Woong;Song, Hyung-Yong;Kim, Hyeon-A;Hwang, Eun-Yeong;Jeon, You-Jin
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.744-747
    • /
    • 2010
  • In this study, antioxidant activity of enzymatic, ethanolic and aqueous extract from Blueberry were evaluated by measuring the scavenging activity on 1,1-diphenyl-2-picrylhydrazyl (DPPH). Enzymatic extract were prepared by enzymatic hydrolysis of Blueberry using food grade five different carbohydrases (Viscozyme, celluclast, AMG, Termarmyl, Ultraflo) and five proteases (Protamex, Kojizyme, Neutrase, Flavourzyme, Alcalase). The ethanol extract were lower than enzymatic extracts in yield, but higher in ployphenolic contents. The 70% ethanolic extract of Blueberry exhibited better DPPH radical scavenging activity compared to those of other extracts. These results suggest that Blueberry would be a good raw materials for antioxidant.

  • PDF

ACE-Inhibitory Properties of Proteolytic Hydrolysates from Giant Jellyfish Nemopilema nomurai

  • Yoon, Ho-Dong;Kim, Yeon-Kye;Lim, Chi-Won;Yeun, So-Mi;Lee, Moon-Hee;Moon, Ho-Sung;Yoon, Na-Young;Park, Hee-Yeon;Lee, Doo-Seog
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.3
    • /
    • pp.174-178
    • /
    • 2011
  • This study aimed to determine the degree of hydrolysis and angiotensin-I-converting enzyme (ACE)-inhibitory activity of Giant Jellyfish Nemopilema nomurai (jellyfish) hydrolysates. The degree of hydrolysis using six proteolytic enzymes (Alcalase, Flavozyme, Neutrase, papain, Protamex, and trypsin) ranged from 13.1-36.8% and the inhibitory activities from 20.46-79.58%. Using papain hydrolysate, we newly isolated and characterized ACE-inhibitory peptides with a molecular weight of 3,000-5,000 Da that originated from jellyfish collagen. The purified peptide (FII-b) was predicted to be produced from an alpha-2 fragment of the type IV collagen of jellyfish. The N-terminal sequence of FII-b was Asp-Pro-Gly-Leu-Glu-Gly-Ala-His-Gly- and showed 87% identity to the collagen type IV alpha-2 fragment of Rattus norvegicus and a predicted protein from Nematostella vectensis, indicating that the ACE-inhibitory peptide originated from the collagen hydrolysate and had an $IC_{50}$ value of 3.8 ${\mu}g$/mL. The primary structure of the fragment is now being studied; this peptide represents an interesting new type of ACE inhibitor and will provide knowledge of the potential applications of jellyfish components as therapies for hypertension.

Processings and Quality Characteristics of Flavoring Substance from the Short-neck Clam, Tapes philippinarum (바지락을 이용한 풍미소재의 가공 및 품질특성)

  • MOON Jeong-Ho;KIM Jong-Tae;KANG Su-Tae;HUR Jong-Hwa;OH Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.3
    • /
    • pp.210-219
    • /
    • 2003
  • To develop natural flavoring substances, optimal two stage enzyme hydrolysis conditions and flavor compounds of short-neck clam (Tapes philippinarum) enzyme hydrolysates were examined. The optimal enzyme hydrolysis conditions for two stage enzyme hydrolysate (TSEH) of short-neck clam were revealed in temperature at $55^{\circ}C$ for 4 hours digestion with alcalase at the 1st stage and 4 hours digestion at $45^{\circ}C$ with exopeptidase type neutrase at the 2nd stage. In quality tests of hot-water extracts, steam extracts and 4 kinds of enzyme hydrolysates, TSEH processing method was superior to other methods in yield, nitrogen contents, organoleptic taste such as umami intensity and inhibition of off-flavor formation, and transparency of extract. Total free amino acid contents in hot-water extract, steam extract and TSEH were 1,352.1 mg/100 g, 1,174.1 mg/100 g and 2,122.4 mg/100 g, respectively, Major free amino acids in TSEH were glutamic acid, glycine, alanine, tyrosine, phenylalanine and arginine. As for nucleotides and other bases, betaine, TMAO and creatinine were principal components in TSEH. The major inorganic ions in TSEH were Na, K, P and Cl. TSEH also revealed very higher angiotensin-I converting enzyme inhibition effect $(70.7\%)$ than those of hot-water and steam extract. We conclude that TSEH from short-neck clam was more flavorable compared with the seasoning materials on the market, it could be utilized as the instant soup base and the seasoning substances for fisheries processing.

Production of Ready-to-Reconstitute Functional Beverages by Utilizing Whey Protein Hydrolysates and Probiotics

  • Kumar, Sabbini Kalyan;Jayaprakasha, Heddur Manjappa;Paik, Hyun-Dong;Kim, Soo-Ki;Han, Song-Ee;Jeong, A-Ram;Yoon, Yoh-Chang
    • Food Science of Animal Resources
    • /
    • v.30 no.4
    • /
    • pp.575-581
    • /
    • 2010
  • This investigation was aimed at developing a ready-to-reconstitute beverage by utilizing probiotics and whey protein hydrolysates carrying bioactive peptides. Cheddar cheese whey was ultrafiltered. The 18% protein retentate was subjected to protein hydrolysis using Neutrase. The hydrolyzed retentate was further condensed to 35% total solids and spray-dried at $75^{\circ}C$ outlet air temperature. Different levels of sugar, citric acid and stabilizer were blended for spray-dried hydrolysates. Spray-dried hydrolysate was further inoculated with different levels of probiotics grown in a whey medium and dried in fluidized-bed drier at $40^{\circ}C$ to obtain a ready-to-reconstitute beverage. Hydrolysis was greatest at an enzyme:substrate ratio of 1:25 for 3 h. Spray-dried hydrolysate reconstituted to 1% protein and blended with 15% sugar, 0.2% citric acid and 0.15% xantham gum resulted in a superior product with no sedimentation. Accordingly, sugar, citric acid and xanthum gum were dry-blended with spray-dried hydrolysates. Bifidobacterium bifidum and Lactobacillus acidophilus that was grown separately in a whey medium, blended to produce 2% spray-dried hydrolysate and dried as described above resulted in a readyto-reconstitute beverage mix. The fluidized dried product typically exhibited a probiotic count of $10^8$colony forming units (CFU)/g. However, blending of probiotic to the retentate and direct spray-drying precipitously reduced the probiotic count to $10^4$ CFU/g of powder.

Separation of Calcium-binding Protein Derived from Enzymatic Hydrolysates of Cheese Whey Protein

  • Kim, S.B.;Shin, H.S.;Lim, J.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.5
    • /
    • pp.712-718
    • /
    • 2004
  • This study was carried out to separate the calcium-binding protein derived from enzymatic hydrolysates of cheese whey protein. CWPs (cheese whey protein) heated for 10 min at $100^{\circ}C$ were hydrolyzed by trypsin, papain W-40, protease S, neutrase 1.5 and pepsin, and then properties of hydrolysates, separation of calcium-binding protein and analysis of calcium-binding ability were investigated. The DH (degree of hydrolysis) and NPN (non protein nitrogen) of heated-CWP hydrolysates by commercial enzymes were higher in trypsin than those of other commercial enzymes. In the result of SDS-PAGE (sodium dodecyl sulphate polyacrylamide gel electrophoresis), $\beta$-LG and $\alpha$-LA in trypsin hydrolysates were almost eliminated and the molecular weight of peptides derived from trypsin hydrolysates were smaller than 7 kDa. In the RP-HPLC (reverse phase HPLC) analysis, $\alpha$-LA was mostly eliminated, but $\beta$-LG was not affected by heat treatment and the RP-HPLC patterns of trypsin hydrolysates were similar to those of SDS-PAGE. In ion exchange chromatography, trypsin hydrolysates were shown to peak from 0.25 M NaCl and 0.5 M NaCl, and calcium-binding ability is associated with the large peak, which was eluted at a 0.25 M NaCl gradient concentration. Based on the results of this experiment, heated-CWP hydrolysates by trypsin were shown to have calcium-binding ability.

Antioxidant Activity of Pepsin Hydrolysate Derived from Edible Hippocampus abdominalis in vitro and in Zebrafish Models (빅벨리 해마(Hippocampus abdominalis) 유래 펩신 가수분해물의 In vitro와 In vivo에서의 항산화 효능)

  • Kim, Hyun-Soo;Shin, Byeung-Ok;Kim, Seo-Young;Wang, Lei;Lee, WonWoo;Kim, Yoon Taek;Rho, Sum;Cho, Moonjae;Jeon, You-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.4
    • /
    • pp.445-453
    • /
    • 2016
  • Seahorse Hippocampus abdominalis a marine teleost fish, has long been used as one of the essential materials in traditional Chinese medicine. However, the uses of seahorse have been limited due to its high cost, despite its beneficial biological activities. Seahorse has not been widely explored for its biofunctional properties and active components. In the present study, the enzymatic hydrolysates of seahorse were prepared by using two digestive enzymes (trypsin and pepsin) and five food grade enzymes (neutrase, protamex, alcalase, kojizyme, and flavourzyme). The enzymatic hydrolysates indicated higher hydrolysis yields than its water extract. Among them, the distilled water-pepsin hydrolysate (DP) which was obtained by distilled water extraction followed by pepsin hydrolysis, showed the highest yield and protein content as well as the highest alkyl radical scavenging activity. Also, it provided protective effects against oxidative stress induced by AAPH in vero cell and zebrafish. Further fractionation based on the molecular weight was carried out to identify it’s active components, and < 5 kDa (less than 5 kDa) molecular weight fraction was confirmed to have the highest antioxidant activity. In conclusion, this study suggests that DP of seahorse has antioxidant properties, and might be a novel and useful material from the marine origin for healthy functional foods and cosmetics.

Immuno-potentiating Activities of Enzymatic Hydrolysate of Japanese Mud Shrimp Upogebia major (쏙(Upogebia major) 효소가수분해물의 면역증강 효과)

  • Lee, Ji-Hyun;Yang, Ji-Eun;Song, Jae-Hee;Maeng, Sang-Hyun;Kim, So-Yeon;Yoon, Na-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.2
    • /
    • pp.135-141
    • /
    • 2018
  • This study investigated the immuno-potentiating activities of Japanese mud shrimp Upogebia major. We examined the effects of enzymatic hydrolysate from U. major on the production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) and on the expression of pro-inflammation cytokines including $TNF-{\alpha}$, IL-6 and $IL-1{\beta}$ in RAW 264.7 cells. The treatment of six enzymatic hydrolysates of U. major (alcalase, ${\alpha}$-chymotrypsin [${\alpha}-Chy$], trypsin, pepsin, neutrase, protamex) significantly increased the production of NO in RAW 264.7 cells, with ${\alpha}-Chy$ having the greatest effect. This hydrolysate was fractionated by two ultrafiltration membranes at 3 and 10 kDa to created three fractions (below 3 kDa, between 3 and 10 kDa, and above 10 kDa). Of these, the <3 kDa and >10 kDa fractions showed significant increases in NO production. These two fractions also induced $PGE_2$ production in RAW 264.7 cells and showed significant increases in the expression of all cytokines studied. These results suggest that enzymatic hydrolysate from U. major is a potentially useful food material with immune-potentiating effects.

Antioxidant Effect of Tropical Seaweed Pylaiella littoralis Extracts Collected from Chuuk Lagoon in Federated States of Micronesia (마이크로네시아에 서식하는 해조류 Pylaiella littoralis 추출물의 항산화 효과)

  • Ye, Bo-Ram;Jang, Ji-Yi;Kwon, Young-Kyung;Jeon, Seon-Mi;Jeong, Joo-Yeong;Kang, Do-Hyung;Oh, Chul-Hong;Kim, Ji-Hyung;Affan, Abu;Hyun, Jung-Ho;Heo, Soo-Jin
    • Ocean and Polar Research
    • /
    • v.34 no.3
    • /
    • pp.297-304
    • /
    • 2012
  • Pylaiella littoralis was collected in the Chuuk lagoon of the Federated States of Micronesia (FSM). The FSM has a variety of coral reef ecosystems, which provide essential materials, such as minerals, vitamins, essential amino acids, for marine organisms. In this study, the antioxidant activities of ethanol and enzymatic extracts of P. littoralis were evaluated by measuring their scavenging activities on DPPH free radical, Alkyl radical, hydroxyl radical and cell viability. The enzymatic extracts were hydrolyzed to prepare water soluble extracts by using five carbohydrate degrading enzymes (AMG, Celluclast, Termamyl, Ultraflo, and Viscozyme) and five proteases (Alcalase, Flavourzyme, Kojizyme, Neutrase, and Protamex). As a result, the enzymatic extracts prepared by Flavourzyme, Ultraflo, and Kojizyme exhibited the greatest effects in DPPH free radical, alkyl radical scavenging activity and cell viability. Also, these enzymatic extracts had a higher antioxidant effect then commercial antioxidants in DPPH free radical and Alkyl radical scavenging activity. This study suggests that P. littoralis might be a useful source of natural antioxidants for the development of dietary supplements.