• Title/Summary/Keyword: neurotrophins

Search Result 24, Processing Time 0.022 seconds

Expression of Neurotrophin 4 and Its Receptor Tyrosine Kinase B in Reproductive Tissues during the Follicular and Luteal Phases in Cows

  • Sun, Yongfeng;Li, Chunjin;Sun, Yanling;Chen, Lu;Liu, Zhuo;Ma, Yonghe;Wang, Chunqiang;Zhang, Wei;Zhou, Xu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.336-343
    • /
    • 2011
  • The neurotrophins, required for the survival and differentiation of the nervous system, are known to be important for the development of the reproductive tissues. However, the signals initiating the growth of follicles, gamete development, and transport and the development of zygote in the reproductive system of cows remain ambiguous. The purpose of the present study was to identify the transcripts and proteins of Neurotrophin 4 (NT4) and its receptor tyrosine kinase B (TrkB) in bovine reproductive tissues. The transcripts and immunoreactivity of NT4 and TrkB proteins were detected by reverse transcription polymerase chain reaction and western blot analysis. Using immunohistochemistry, the specific immunoreactivity of NT4 and TrkB were detected in the oocytes of primordial follicles and in the growing primary follicles. The NT4 and TrkB immunoreactivity was predominantly observed in granulosa cells, cumulus granulosa cells, cumulus oocyte complexes, theca cells of mature follicles, as well as in the oviduct epithelial cells, uterine gland cell, and epithelium cells of the uterus during the follicular and luteal phases in cows. Expressions of NT4 and TrkB mRNAs were not significantly different among the ovary, oviduct, and uterus of the follicular phase. For the luteal phase, the expression of NT4 mRNA in the ovary was significantly higher than that in the oviduct and uterus, and the expression of TrkB mRNA in the oviduct was significantly higher than that in the ovary and uterus, as determined by fluorescence quantitative reverse transcription polymerase chain reaction. The expression of NT4 mRNA was significantly higher than that of TrkB mRNA in the ovary and uterus, whereas NT4 mRNA expression was lower than that of TrkB mRNA in the oviduct during the luteal phase. The present study hypothesizes that NT4 participates in the regulation of both gonads and extra-gonadal reproductive tissues in cows.

The Effects of Treadmill Training on Neurotrophins and Immediately Early Protein in Obese Rats (트레드밀 트레이닝이 비만 쥐의 neurotrophins와 초기발현 단백질에 미치는 영향)

  • Woo, Jin-Hee;Shin, Ki-Ok;Yeo, Nam-Heoh;Park, So-Young;Kang, Sung-Hwun
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.985-991
    • /
    • 2011
  • The purpose of this study was to investigate the biological effect of obesity-induced oxidative damage on neurogenesis and early protein expression. Obesity was induced I thirty 4-week old male Sprague-Dawley rats through a high fat diet for 15 weeks. After one week of environmental adaptation, the rats were divided into 2 groups: high fat diet sedentary group (HDS, n=15) and high fat diet training group (HDT, n=15). Exercise training was performed 5 times a week for 8 weeks, with mild-intensity treadmill running for weeks 1-4 and moderate-intensity treadmill running for weeks 5-8. After the 8 week training period, we analyzed lipid profiles, serum 8-hydroxyguanosine (8-OHdG), liver tissue malondialdehyde (MDA) related to oxidative damage factors, nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), c-fos, c-jun, and extracellular signal regulated kinase (Erk) in the hippocampus. The results of this study are as follows. There were differences between HDS and HDT in triglyceride (TG) and total cholesterol (TC) (p<0.05). In high density lipoprotein (HDL-c), the HDT was higher than HDS after treadmill training (p<0.05). In 8-OHdG, the HDT was lower than HDS after treadmill training (p<0.05). Genetic expressions of c-jun, BDNF and MDA in the HDT were higher than in the HDS after treadmill training in hippocampus (p<0.05). Therefore, we conclude that 8 weeks of treadmill training can improve imbalanced lipid profiles, reduce oxidative damage, and activate neurogenesis in obese rats.

Expression of Neurotrophic Factors and Their Receptors in Rat Posterior Taste Bud Cells

  • Park, Dong-Il;Chung, Ki-Myung;Cho, Young-Kyung;Kim, Kyung-Nyun
    • International Journal of Oral Biology
    • /
    • v.39 no.2
    • /
    • pp.107-114
    • /
    • 2014
  • Taste is an important sense in survival and growth of animals. The growth and maintenance of taste buds, the receptor organs of taste sense, are under the regulation of various neurotrophic factors. But the distribution aspect of neurotrophic factors and their receptors in distinct taste cell types are not clearly known. The present research was designed to characterize mRNA expression pattern of neurotrophic factors and their receptors in distinct type of taste cells. In male 45-60 day-old Sprague-Dawley rats, epithelial tissues with and without circumvallate and folliate papillaes were dissected and homogenized, and mRNA expressions for neurotrophic factors and their receptors were determined by RT-PCR. The mRNA expressions of brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT3), receptor tyrosine kinase B (TrkB), exclusion of nerve growth factor (NGF), neurotrophin-4/5 (NT4/5), receptor tyrosine kinase A (TrkA), receptor tyrosine kinase C (TrkC), and p75NGFR were observed in some population of taste cell. In support of this result and to characterize which types of taste cells express NT3, BDNF, or TrkB, we examined mRNA expressions of NT3, BDNF, or TrkB in the $PLC{\beta}2$ (a marker of Type II cell)-and/or SNAP25 (a marker of Type III cell)-positive taste cells by a single taste cell RT-PCR and found that the ratio of positively stained cell numbers were 17.4, 6.5, 84.1, 70.3, and 1.4 % for $PLC{\beta}2$, SNAP25, NT3, BDNF, and TrkB, respectively. In addition, all of $PLC{\beta}2$-and SNAP25-positive taste cells expressed NT3 mRNA, except for one taste bud cell. The ratios of NT3 mRNA expressions were 100% and 91.7% in the SNAP25-and $PLC{\beta}2$-positive taste cells, respectively. However, two TrkB-positive taste cells co-expressed neither $PLC{\beta}2$ nor SNAP 25. The results suggest that the most of type II or type III cells express BDNF and NT3 mRNA, but the expression is shown to be less in type I taste cells.

Effects of Treadmill Exercise on Alpha-synuclein Mutation and Activated Neurotrophins in Nigrostriatal Region of MPTP-induced Parkinson Models (MPTP 파킨슨 모델의 트레드밀 운동이 알파시누크린 변성과 흑질선조체내 신경성장인자 활성화에 미치는 영향)

  • Park, Jae-Sung;Kim, Jeong-Hwan;Yoon, Sung-Jin
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.19 no.2
    • /
    • pp.73-88
    • /
    • 2009
  • Objectives : Neuronal changes that result from treadmill exercise for patients with Parkinson's disease(PD) have not been well documented, although some clinical and laboratory reports suggest that regular exercise may produce a neuroprotective effect and restore dopaminergic and motor functions. However, it is not clear if the improvements are due to neuronal alterations within the affected nigrostriatal region or result from a more general effect of exercise on affect areas and motivation. In this study, we demonstrate that motorized treadmill exercise improves the neuronal outcomes in rodent models of PD. Methods : We used a chronic mouse model of parkinsonism, which was induced by injecting male C57BL/6 mice with 10 doses(Every 12 hour) of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (30 mg/kg) and probenecid (20 mg/kg) over 5 days. These mice were able to sustain an exercise training program on a motorized rodent treadmill at a speed of 18 m/min, $0^{\circ}$ of inclination, 40 min/day, 5 days/week for 4 weeks. At the end of exercise training, we extracted the brain and compared their neuronal and neurochemical changes with the control(saline and sedentary) mice groups. Synphilin protein is the substance that manifestly reacts with ${\alpha}$-synuclein. In this study, we used Synphilin as a manifest sign of recovery from neurodegeneration. We analyze the brain stems of the substantia nigra and striatum region using the western blotting technique. Results : There were no expression of synphilin in the saline-induced groups. The addition of MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) greatly accelerated synphilin expression which meant an aggregation of ${\alpha}$-synuclein. But, the MPTP-induced treadmill exercise group showed significantly lower expression than the MPTP-induced sedentary group. This means treadmill exercise has a definite effect on the decrease of ${\alpha}$-synuclein aggregation. Conclusions : In this study, our results suggest that treadmill exercise promoted the removal of the aggregation of ${\alpha}$-synuclein, resulting in protection against disease development and blocks the apoptotic process in the chronic parkinsonian mice brain with severe neurodegeneration.