• Title/Summary/Keyword: neurotransmitter

Search Result 371, Processing Time 0.021 seconds

Rim1α and Neurexin3 Regulate Synaptosomal Dopamine Release (Rim1α와 neurexin3의 시냅토좀 도파민 분비 조절)

  • Lee, Sang-Kyeong;Shim, Joo-Cheol;Kim, Young-Hoon;Kong, Bo-Geum;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.19 no.9
    • /
    • pp.1232-1238
    • /
    • 2009
  • Neurotransmitter release is regulated by various proteins of the active zone in the presynaptic nerve terminals. Dopamine (DA) is an essential neurotransmitter associated with the pathophysiology of diverse behavioral and mental illness such as schizophrenia and drug addiction. We measured synaptosomal DA release of knockout (KO) mice which lacked major genes related to neurotransmitter release. Synaptosomal DA uptake and release were performed and measured using [$^3H$]-DA and superfusion experiments. 3 of the 17 KO mice exhibited altered DA release compared to their littermate controls. In $Rim1{\alpha}$ KO, [$^3H$]-DA release evoked by membrane depolarization significantly decreased. Both basal (physiological buffer-evoked) and membrane depolarization-evoked DA release significantly decreased in dopaminergic conditional KO of $Rim1{\alpha}{\beta}$. Dopaminergic conditional KO of neurexin3 demonstrated a significant increase of membrane depolarization-evoked DA release. These data explain the similarities and distinctions between DA and other classical neurotransmitters such as glutamate and GABA ($\gamma$-aminobutyric acid) release. In conclusion, $Rim1{\alpha}$ and neurexin3 may be important regulators of presynaptic DA release and related to disorders of the nervous system.

Development of New NMDA Receptor Agonists/Antagonists

  • Park, No-Sang
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.72-74
    • /
    • 2003
  • Excitatory amino acid (EAA) receptor, particularly NMDA receptor, are now known to be one of major transmitter receptors involved in synaptic excitation. Excessive release of EAA neurotransmitter, glutamate, is an important causative factor in the neurodegenerative processes and can cause neuronal damage and cell death. This excitotoxicity has been shown to be $Ca^{++}$ dependent. (omitted)

  • PDF

Altered Complexin Expression in Psychiatric and Neurological Disorders: Cause or Consequence?

  • Brose, Nils
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.7-19
    • /
    • 2008
  • Complexins play a critical role in the control of fast synchronous neurotransmitter release. They operate by binding to trimeric SNARE complexes consisting of the vesicle protein Synaptobrevin and the plasma membrane proteins Syntaxin and SNAP-25, which are key executors of membrane fusion reactions. SNARE complex binding by Complexins is thought to stabilize and clamp the SNARE complex in a highly fusogenic state, thereby providing a pool of readily releasable synaptic vesicles that can be released quickly and synchronously in response to an action potential and the concomitant increase in intra-synaptic $Ca^{2+}$ levels. Genetic elimination of Complexins from mammalian neurons causes a strong reduction in evoked neurotransmitter release, and altered Complexin expression levels with consequent deficits in synaptic transmission were suggested to contribute to the etiology or pathogenesis of schizophrenia, Huntington's disease, depression, bipolar disorder, Parkinson's disease, Alzheimer's disease, traumatic brain injury, Wernicke's encephalopathy, and fetal alcohol syndrome. In the present review I provide a summary of available data on the role of altered Complexin expression in brain diseases. On aggregate, the available information indicates that altered Complexin expression levels are unlikely to have a causal role in the etiology of the disorders that they have been implicated in, but that they may contribute to the corresponding symptoms.

Effects of Ginseng Total Saponins and U-50,488H on Electrically Induced Twitch Responses of Mouse Vas Deferens (전기자극으로 유도된 마우스 수정관의 수축작용에 미치는 U-50,488H와 인삼사포닌의 영향)

  • Kim, Hack-Seang;Seong, Yeon-Hee;Kim, Sun-Hye;Kim, Suk-Chang;Choi, Kang-Ju;Oh, Ki-Wan
    • Journal of Ginseng Research
    • /
    • v.17 no.2
    • /
    • pp.109-113
    • /
    • 1993
  • The effects of ginseng total saponins (GTS) on the action of U-50,488H, a $textsc{k}$-opioid receptor agonist, on the electrically induced twitch responses of mouse vats deferens were studied. U-50,488H ($10^9$~$10^{-5}$M) inhibited the twitch contractions in a dose-dependent manner, which were caused by adenosine 5'-triphosphate (ATP) released from the stimulated sympathetic nerve, and this effect was antagonized by naloxone ($10^6$ M). GTS, which itself induced the inhibition of the twitch contractions, acted additively to U-50,488H, GTS and U-50,488H had no effect on the tension of the unstimulated organs. The contractions elicited by ATP were not affected by U-50,488H, but inhibited by GTS. These results suggest that U-50,488H suppressed the twitch contractions by the inhibition of neurotransmitter release from presynaptic nerve terminals via action on opioid receptor, but G75, by inhibiting the action of the neurotransmitter on the smooth muscle.

  • PDF

Neurobiology of Aggression (공격성의 신경생물학)

  • Kim, Ki Won;An, Eun-Soog;Lee, Yu-Sang;Park, Seon-Cheol
    • Korean Journal of Biological Psychiatry
    • /
    • v.20 no.4
    • /
    • pp.129-135
    • /
    • 2013
  • Aggression can be defined as 'behavior intended to harm another' which can be seen both from humans and animals. However, trying to understand aggression in a simplistic view may make it difficult to develop an integrated approach. So, we tried to explain aggression in a multidisciplinary approach, affected by various factors such as neuroanatomical structures, neurotransmitter, genes, and sex hormone. Parallel with animal models, human aggression can be understood with two phenomena, offensive aggression and defensive aggression. Neurobiological model of aggression give a chance to explain aggression with an imbalance between prefrontal regulatory influences and hyper-reactivity of the subcortical areas involved in affective evaluation, finally in an aspect of brain organization. Serotonin and GABA usually inhibit aggression and norepinephrine while glutamate and dopamine precipitate aggressive behavior. As there is no one gene which has been identified as a cause of aggression, functions between gene to gene interaction and gene to environment interaction are being magnified. Contributions of sex hormone to aggression, especially molecular biologic interaction of testosterone and regulation of estrogen receptor have been emphasized during the research on aggression. This multidisciplinary approach on aggression with types, neurochemical bases, and animal models can bring integrated interpretation on aggression.

Effects of Low Intensity Muscle Training on Norepinephrine, Epinephrine, and Serotonin Level in Stroke Patients with Depression and Emotional Incontinence (저강도 근력 운동이 우울증 및 감정 조절 장애가 있는 뇌졸중 환자의 노르에피네피린, 에피네피린, 그리고 세로토닌에 미치는 영향)

  • Hong, Soungkyun;Lee, Donggeon;Lee, Gyuchang
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.6 no.2
    • /
    • pp.69-76
    • /
    • 2018
  • Purpose : This study investigated the effects of low-intensity muscle training on neurotransmitters associated with depression and emotion regulation disorders in survivors with stroke who were diagnosed with depression or emotion regulation disorder. Methods : Survivors of chronic stroke diagnosed with depression or emotion regulation disorder (n = ) were included in the study. Concentrations of serotonin, norepinephrine, and epinephrine were measured before and after. Low-intensity muscle training was performed once a day for 50 minutes, 5 times a week for 10 weeks. Result : Levels of serotonin, norepinephrine, and epinephrine improved significantly after intervention (p < .05). Conclusion : These results confirm that low-intensity muscle training has a positive effect on neurotransmitter concentrations in survivors with stroke diagnosed with depression and emotion regulation disorders. Future studies should analyze the changes in neurotransmitters in more detail using various exercise methods and intensities to investigate their effects on depression and emotion regulation disorders.

How Do Oroxylin A and Spinosin Exert Their Activities on Cognitive Function?

  • Bae, Ho Jung;Park, Ho Jae;Kim, Dong Hyun;Ryu, Jong Hoon
    • Natural Product Sciences
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Flavonoids are mainly contained in the vegetables and medicinal herbs. Until now, over 5,000 kinds of flavonoid have been identified and their biological activities have been reported. Among them, we are interested in oroxylin A and spinosin because of their specific structures having bulky group at C-6 of ring A. Oroxylin A is contained in the Scutellaria baicalensis and exhibits cognitive enhancing activity as a GABAA receptor antagonist, which is different from those of mainly contained in the S. baicalenis, baicalein or wogonin. Spinosin is isolated from Zizyphus jujuba var. spinosa and mainly studied as a hypnotic or anxiolytic agent because of traditional knowledge about its original herb. As far as we know, the cognitive function of spinosin was first identified by our group. In this review, we discuss how such flavonoids exert their pharmacological activities associated with cognitive function based on the receptor binding study and behavioral studies. Traditional knowledge and reverse pharmacology may be addressed in the research field of phytochemical pharmacology and useful to unveil the secret of phytochemicals.

Cocaine- and Amphetamine-Regulated Transcript (CART) Peptide Plays Critical Role in Psychostimulant-Induced Depression

  • Meng, Qing;Kim, Hyoung-Chun;Oh, Seikwan;Lee, Yong-Moon;Hu, Zhenzhen;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.425-431
    • /
    • 2018
  • Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter expressed in the central nervous systems. Previously, several reports demonstrated that nucleus accumbal-injected CART peptide positively modulated behavioral sensitization induced by psychostimulants and regulated the mesocorticolimbic dopaminergic pathway. It is confirmed that CART peptide exerted inhibitory effect on psychostimulant-enhanced dopamine receptors signaling, $Ca^{2+}$/calmodulin-dependent kinase signaling and crucial transcription factors expression. Besides modulation of dopamine receptors-related pathways, CART peptide also exhibited elaborated interactions with other neurotransmitter receptors, such as glutamate receptors and ${\gamma}$-aminobutyric acid receptors, which further account for attribution of CART peptide to inhibition of psychostimulant-potentiated locomotor activity. Recently, CART peptide has been shown to have anxiolytic functions on the aversive mood and uncontrolled drug-seeking behaviors following drug withdrawal. Moreover, microinjection of CART peptide has been shown to have an antidepressant effect, which suggests its potential utility in the mood regulation and avoidance of depression-like behaviors. In this review, we discuss CART pathways in neural circuits and their interactions with neurotransmitters associated with psychostimulant-induced depression.

Immunohistochemical study on some calcium binding proteins and neurotransmitters in suprachiasmatic nucleus of the Korean native goat (한국재래산양 시각교차위핵 내 몇 가지 칼슘결합단백질과 신경전달물질의 분포에 관한 면역조직화학적 연구)

  • Song, Seung-hoon;Lee, Heunshik S.;Lee, In-Se
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.2
    • /
    • pp.139-146
    • /
    • 2001
  • This study was carry out to identify the distribution of calcium binding proteins; calbindin(CB), calretinin(CR) and parvalbumin(PA) in the suprachiasmatic nucleus(SCN) of the Korean native goat by immunohistochemical methods. The expression of substance P(SP), calcitonin gene-related peptide(CG-RP), neuropeptide Y(NPY), vasoactive intestinal polypeptide(VIP) and galanin(GAL) were also investigated. CR-immunoreactivity was found in both of the cell bodies and fibers in the SCN, which the CB-immunoreactivity was observed only in the fibers. The immunoreactivity for VIP was observed in both the cell bodies and fibers, but SP-, NPY, GAL-immunoreactivities were only found in the fibers. CGRP-immunoreactivity was not seen in cell body and fibers. These results suggest that VIP, SP, NPY and GAL play a neuromodulatory or/ and neurotransmitter roles in cooperation with CB and CR in SCN of the Korean native goat.

  • PDF