• 제목/요약/키워드: neuronal differentiation activity

검색결과 29건 처리시간 0.022초

Role of Cannabinoid on Neuronal Differentiation of P19 Cells

  • ;길성호
    • 대한의생명과학회지
    • /
    • 제17권3호
    • /
    • pp.267-271
    • /
    • 2011
  • P19 cells are pluripotent embryonal carcinoma cells and can be differentiated into neuronal cell type by treatment with retinoic acid (RA) and aggregation culture. Cannabinoids are the active components of Cannabis sativa and they have diverse pharmacologic activities, such as pain control, anti-inflammatory effects, neuro-protection effects and tumor regression. Cannabinoids also involved in neuronal proliferation, migration, differentiation and survival in developing brain. Here, we studied the role of cannabinoids on neuronal differentiation of P19 cells. Treatment with cannabinoids increased the neuronal differentiation induced by RA and also promoted transcriptional activity of neurogenin 1, key transcription factor for neuronal differentiation of P19 cells. These results suggest that the cannabinoids can accelerate neuronal differentiation of P19 cells.

Overexpression of GAP Causes the Delay of NGF-induced Neuronal Differentiation and the Inhibition of Tyrosine Phosphorylation of SNT in PC12 Cells

  • Yang, Sung-Il;Kaplan, David
    • BMB Reports
    • /
    • 제28권4호
    • /
    • pp.316-322
    • /
    • 1995
  • The GTPase activating protein (GAP) can function both as a negative regulator and an effector of $p21^{ras}$. Overexpression of GAP in NIH-3T3 cells has been shown to inhibit transformation by ms or src. To investigate the function of GAP in a differentiative system, we overexpressed this protein in the nerve growth factor (NGF)-responsive PC12 cell line. Two-fold overexpression of GAP caused a delay of several days in the onset of NGF- but not FGF-induced neuronal differentiation of PC12 cells. However, the NGF-induced activation or tyrosine phosphorylation of upstream (Trk, PLC-${\gamma}1$, SHC) and downstream (B-Raf and $p44^{mapk/erk1}$) components of $p21^{ras}$, signalling cascade was not altered by GAP overexpression. Therefore, the change of phenotype induced by GAP was probably not due to GAP functioning as a negative regulator of $p21^{ras}$. Rather, we found that NGF-induced tyrosine phosphorylation of SNT, a specific target of neurotrophin-induced tyrosine kinase activity, was inhibited by GAP overexpression. SNT is thought to function upstream or independent of $p21^{ras}$. Thus in PC12 cells, overexpressed GAP may control the rate of neuronal differentiation through a pathway involving SNT rather than the $p21^{ras}$ signalling pathway.

  • PDF

인간 골수유래-중간엽 줄기세포(hBM-MSCs)에서 PDE4 억제조절을 통한 신경세포 분화 효율 개선 (Improvement of Neuronal Differentiation by PDE4 Inhibition in Human Bone Marrow-mesenchymal Stem Cells)

  • 정다희;조이슬;조광원
    • 생명과학회지
    • /
    • 제26권12호
    • /
    • pp.1355-1359
    • /
    • 2016
  • 인간 중간엽 줄기세포(hMSCs)는 신경세포(neuron-like cells)를 포함한 다양한 세포로 분화할 수 있는 능력을 지닌 성체 줄기세포(adult stem cells)이다. 본 연구에서는 인간의 골수유래-중간엽 줄기세포(bone marrow-mesenchymal stem cells; hBM-MSCs)를 이용한 신경분화에서 신경세포 표지자(neuronal marker)인 NF-M, Tuj-1 뿐만 아니라 성상세포 표지자(glial marker)인 GFAP의 발현 역시 의미 있게 증가함을 real-time PCR, Western blot, and immunocytochemical staining법을 통하여 관찰하였다. 이를 개선하기 위하여, 신경분화에 중요한 신호전달자(signal intermediator)인 PDE4를 억제한 후 신경분화를 유도하였다. PDE4 억제자인 rolipram 혹은 resveratrol를 각각 처리하여 신경분화한 줄기세포(Roli- or RSV-dMSCs)에서 NF-M, Tuj-1의 발현이 증가하였고 반면, GFAP의 발현은 감소함을 real-time PCR, Western blot, and immunocytochemical staining법을 통하여 관찰하였다. 본 연구를 통하여, PDE4를 조절하며 줄기세포의 신경분화를 개선할 수 있음을 보였다.

Lipase Inactive Mutant of PLC-γ1 Regulates NGF-induced Neurite Outgrowth Via Enzymatic Activity and Regulation of Cell Cycle Regulatory Proteins

  • Le Xuan Nguyen, Truong;Ahn, Jee-Yin
    • BMB Reports
    • /
    • 제40권6호
    • /
    • pp.888-894
    • /
    • 2007
  • Src homology (SH) domains of phospholipase C-$\gamma1$ (PLC-$\gamma1$) impair NGF-mediated PC12 cells differentiation. However, whether the enzymatic activity is also implicated in this process remains elusive. Here, we report that the enzymatic activity of phospholipase C-$\gamma1$ (PLC-$\gamma1$) is at least partially involved to the blockage of neuronal differentiation via an abrogation of MAPK activation, as well as sustained Akt activation. By contrast, Overexpression of WT-PLC-$\gamma1$ exhibited sustained NGF-induced MAPK activation, and triggered transient Akt activation resulting in profound inhibition of neurite outgrowth. However, lipase-inactive mutant (LIM) PLC-$\gamma1$ cells fail to suppress neurite outgrowth, although it contains intact SH domains, specifically enhancing the expression of cyclin D1 and p21 proteins, which regulate the function of retinoblastoma Rb protein. These observations show that the lipase inactive mutant of PLC-$\gamma1$ does not alter NGF-induced neuronal differentiation via enzymatic inability and the modulation of cell cycle regulatory proteins independent on SH3 domain.

A Comparison of ROCK Inhibitors on Human Bone Marrow-Derived Mesenchymal Stem Cell Differentiation into Neuron-Like Cells

  • Lee, Hyun-Sun;Kim, Kwang-Sei;O, Eun-Ju;Joe, Young-Ae
    • Biomolecules & Therapeutics
    • /
    • 제18권4호
    • /
    • pp.386-395
    • /
    • 2010
  • Bone marrow-derived mesenchymal stem cells (BM-MSC) are a multipotent cell population that can differentiate into neuron-like cells. Previously it has been reported that murine BM-MSC can differentiate into neuron-like cells by co-treatment with a Rho-associated kinase (ROCK) inhibitor -Y27632 and $CoCl_2$. In this study, we compared several ROCK inhibitors for the ability to induce human BM-MSCs to differentiate into neuron-like cells in the presence of $CoCl_2$. Y27632 with high specificity for ROCK at 1-30 ${\mu}M$ was best at inducing neuronal differentiation of MSCs. Compared to HA1077 and H1152, which also effectively induced morphological change into neuron-like cells, Y27632 showed less toxicity even at 100 ${\mu}M$, and resulted in longer multiple branching processes at a wide range of concentrations at 6 h and 72 h post-induction. H89, however, which has less specificity by inhibition of protein kinase A, S6 kinase 1 and MSK1 with similar or greater potency, was less effective at inducing neuronal differentiation of MSCs. Simvastatin, which can inhibit Rho, Ras, and Rac by blocking the synthesis of isoprenoid intermediates, showed little activity for inducing morphological changes of MSCs into neuron-like cells. Accordingly, the expression patterns for neuronal cell markers,including ${\beta}$-tubulin III, neuron-specific enolase, neurofilament, and microtubule-associated protein, were consistent with the pattern of the morphological changes. The data suggest that the ROCK inhibitors with higher specificity are more effective at inducing neuronal differentiation of MSCs.

15-Deoxy-$PGJ_2$ Stimulates Neuronal Differentiation of Embryonic Midbrain Cells by Up-regulation of PPAR-gamma Activity via the JNK-dependent Pathway

  • Park, Ki-Sook;Lee, Sang-Min;Lee, Rhee-Da;Han, Soon-Young;Park, Kui-Lae;Yang, Ki-Hwa;Song, Yuen-Sook;Moon, Dong-Chuel;Song, Suk-Gil
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.200.2-201
    • /
    • 2003
  • The effect of 15-deoxy-PGJ$_2$ on the differentiation of embryonic midbrain cells into dopaminergic neuronal cells, and the relationship between cell differentiation with activation of PPAR-yand possible signal pathway were investigated, 15-Deoxy-PGJ$_2$ increased neurite extension, a typical characteristics of the differentiation of embryonic midbrain cells isolated from 12 day's rat embryos in a dose-dependent manner. (omitted)

  • PDF

신경모세종의 분화에 따른 인체 CD99의 표현의 증가 (The increased expression of CD99 in a differentiated neuroblastoma cell line)

  • 최은영;이임순
    • IMMUNE NETWORK
    • /
    • 제1권1호
    • /
    • pp.53-60
    • /
    • 2001
  • Background: The human mic2 gene is a pseudoautosomal gene that encodes a cell surface antigen, CD99. High levels of CD99 constitute a tumor marker in Ewing s sarcoma (ES). We have recently demonstrated that CD99-induced apoptosis occurs only in undifferentiated ES cells, not in differentiated ES cells, raising the possibility of the involvement of CD99 in neural ontogeny. Methods: To elucidate the relations between the expression of CD99 and the differentiation of neural cells and the mechanism by which the expression of CD99 is regulated, we analyzed the differential patterns of CD99 expression in SH-SY5Y by treatment of 12-O-tetradecanoyl-13-phorbol acetate (TPA) and retinoic acid. In addition, to explore the transcriptional activity of CD 99 during neural cell differentiation, SH-SY5Y cells were transiently transfected with a CD99 promoter-driven luciferase construct, and treated with the inducers. Results: In immunoblotting and flow cytometry, the expression level of CD99 was increased on differentiated SH-SY5Y cells induced by TPA and retinoic acid. The luciferase activity was elevated by the treatment with TPA, known to mature SH-SY5Y cells toward a sympathetic neuronal lineage, whereas retinoic acid inducing a sympathetic chromaffin lineage displayed little effect. Conclusion: The result indicates that CD99 might be expressed only on cells maturing toward a neuronal lineage among differentiating primitive neuronal cells. In addition, the expression of CD99 seems to be regulated at the transcriptional level during the differentiation.

  • PDF

해수 미세조류인 Chlorella capsulata의 열 수 추출물의 신경세포 분화촉진에 관한 연구 (Effect of Neuronal Differentiation Activity of Hot Water Extracts of Marine Alga, Chlorella capsulata)

  • 이현용;이현수;이서호;김대호;박진홍
    • 한국미생물·생명공학회지
    • /
    • 제31권2호
    • /
    • pp.165-170
    • /
    • 2003
  • 본 실험은 해수 미세 조류인 Chlorella capsuiata로부터 신경세포에 대한 활성을 증가시키는 기능성물질을 분리하여 해수자원의 생체 조절자원으로서의 가능성을 제시하고자 실시하였다. 선별된 해수 Chlorella를 이용하여 활성물질을 분리한 뒤, 그 물질의 신경활성을 탐색하였다. C. capsulata의 물 추출물로부터 분리된 분획물(CCE)의 분자량은 약 45KDa(data not shown)으로 기존에 연구된 60~100 KDa보다 더 낮은 범위에서 물질이 분리되었으며, 이는 현재 발표된 많은 연구결과에서 주장하는 물질들과는 다른 종류의 물질임을 제시하고 있어 이에 보다 심층적인 연구가 수행되어져야 한다고 생각된다. 실험 결과를 통해 볼 때 활성을나타낸 주된 물질은 C. capsulata의 수용성 성분으로 생각되어지며, 260 nm에서 최대 흡광도를 나타내는 물질로 C. capsulate에 존재하는 단백질이 열 변성에 의해 탄수화물과 결합한 glycoprotein의 형태로 존재하는 것으로 추측되지만 일부의 연구결과에서 280nm에 최대 흡광도를 보이는 활성물질이 glycoprotein이라고 주장하고 있어 이 분획물(CCE)에 대한 좀더 심도 깊은 연구가 수행되어져야 한다고 생각된다. 이는 최근에 발표된 Chiorella의 기능성과 관련한 논문들에서 언급한 내용들과 유사한 결과를 나타내지만 대부분이 담수조류에 대한 활성 탐색의 결과임을 감안한다면 본 실험을 통해 해수 미세조류로부터 분리된 물질의 새로운 활성물질로서의 가능성을 제시한 것이라 하겠다. 또한, 다른 유기용매를 통해 활성물질을 분리하는 것과 달리 순수한 물을 통해 Chlorella의 수용성 성분을 추출하는 것이 좀더 신경세포의 활성을 증가시킨다는 것을 확인하였다. 앞으로 이 수용성 물질에 대찬 면역활성과 in vivo 실험을 통해 좀더 깊은 연구가 수행되어지고, 나아가 대량배양기술, 분리정제 기술이 뒷받침된다면, 고비용의 동물세포를 이용한 신경활성물질을 대체할 새로운 신경 활성물질 개발은 물론 다방면에 걸친 생체 조절기능을 가진 기능성 소재로서 활용 범위가 점차 확되지 않을까 생각한다.

신경성장기전 및 치료제개발

  • 양성일
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1993년도 제1회 추계심포지움 and 제2회 생리분자과학연구센터워크숍
    • /
    • pp.28-33
    • /
    • 1993
  • Regulation of nerve growth factor (NGF)-induced neuronal differentiation by GTPase activating protein(GAP) and its mechanism were investigated in rat pheochromocytoma cell line, PCl2. Overexpression of GAP caused the delay in the onset of neurite outgrowth of PCl2 eel Is in response to NGF. GAP has been known to inhibit p21$\^$ras/, the activated form of which induces neuronal differentiation. Therefore, the activity of p21$\^$ras/ was compared in control cells and cells overexpressing GAP indirectly by measuring the activities of B-Raf and MAP kinase that are known to be positively regulated by p21$\^$ras/. Surprisingly, NGF-induced activities of these two proteins were the same in control eells and GAP-overexpressing cells. Activities of Trk, PLC-r and SMC that act at a site upstream to p21$\^$ras/ in NGF signal transduction pathway were not also affected by GAP overexpression. Interestingly, however, the extent of tyrosine phosphorylation of SNT was found to be remarkably low in cells overexpressing GAP. It has been shown previously that neurotrophins and not mitogens induce SNT tyrosine phosphorylation in PCl2 cells. Thus it is possible that the timing of NGF-induced neuronal differntiation may be in part regulated by SNT and the slower onset of neurite outgrowth in cells overexpressing GAP may be through the inhibition of SNT by GAP.

  • PDF

배양 계배 신경아세포의 분화에 미치는 insulin의 영향 (Effect of Insulin on Differention of Chick Embryonic Neuroblasts Cultured in vitro)

  • 이창호;최덕영;박혜경;곽규봉;김혜선;정진하;하두봉
    • 한국동물학회지
    • /
    • 제34권2호
    • /
    • pp.209-216
    • /
    • 1991
  • 신경세포의 분화에 미치는 insulin의 영향을 알아보기 위하여 계배의 단뇌 신경아세포를 serum-free defined medium에서 배양하였다. Immunofluorescence실험을 통하여 신경특이단백질인 MAP-2는 신경아세포의 세포체와 신경돌기에 존재하는 것으로 나타났다. 또한, 배양액내에 insulin의 농도를 증가하면 신경아세포의 신경돌기 형성이 증가할 뿐 아니라 MAP-2의 합성도 증가하였다. 따라서, 신경아세포의 형태적분화와 생화학적 분화는 서로 밀접하게 연관되어 일어나는 것으로 추측되며, insulin은 신경특이단백질의 합성을 촉진시킴으로써 신경아세포가 신경돌기를 형성하며 분화되어 가는데 결정적인 역할을 하는 것으로 보인다.

  • PDF