• 제목/요약/키워드: neuronal cell death

검색결과 429건 처리시간 0.035초

Protective Effect of Extracts from Euryale ferox against Glutamate-induced Cytotoxicity in Neuronal Cells

  • Lee, Mi-Ra;Kim, Ji-Hyun;Son, Eun-Soon;Park, Hae-Ryong
    • Natural Product Sciences
    • /
    • 제15권3호
    • /
    • pp.162-166
    • /
    • 2009
  • Oxczaasssaidative stress plays an important role in neuronal cell death, which is associated with neurodegenerative conditions such as Alzheimer's and Parkinson's disease. This study evaluated the neuroprotective effect of Euryale ferox (EF) extracts against glutamate-induced cytotoxicity in hybridoma N18-RE-105 cells. Specifically, neuroprotective effects of methanol and ethanol extracts were evaluated by the MTT reduction assay. The ethanol extracts of EF displayed dose dependent protection against neuronal cell death induced by 20 mM of glutamate. Furthermore, the ethanol extracts of EF was sequentially fractionated with hexane, diethyl ether, ethyl acetate, and water layer according to degree of polarity. The hexane fractions exhibited neuroprotective effect against glutamate-stressed N18-RE-105 cells. Overall, results suggest that EF extracts can potentially be used as chemotherapeutic agents against neuronal diseases.

키누레닌 대사산물에 의한 신경세포 손상에 대한 Magnolol의 보호효과에 대한 연구 (Magnolol Attenuates Neuronal Cell Death Induced by Kynurenine Metabolite)

  • 이창욱;이현정;김도희;장영미;이상형;정윤화;김대진;정윤희;김경용;김성수;이원복
    • 한국약용작물학회지
    • /
    • 제17권2호
    • /
    • pp.145-150
    • /
    • 2009
  • This study investigated the protective roles and mechanism of magnolol, from the stem bark of Magnolia officinalis against potential neurotoxin 3-hydroxykynurenine (3-HK)-induced neuronal cell death. For the evaluation of protective role of magnolol, we examined cell viability, apoptotic nuclei, change of mitochondrial membrane potential and caspase activity in human neuroblastoma SH-SY5Y cells. It was found that 3-HK induces neuronal cell death in the human neuroblastoma SH-SY5Y cell line. The reduced cell viability produced characteristic features such as cell shrinkages, plasma membrane blebbing, chromatin condensation, and nuclear fragmentation. The cells treated with 3-HK showed an increase in the concentration of reactive oxygen species (ROS) as well as in caspase activity. In addition, both are involved in the 3-HK-induced apoptosis. Magnolol attenuated the cell viability reduction by 3-HK in both a dose- and time-dependent manner. Optical microscopy showed that magnolol inhibited the cell morphological features in the 3-HK-treated cells. Furthermore, the increase in the ROS concentration and the caspase activities by 3-HK were also attenuated by magnolol. These results showed that magnolol has a protective effect on the 3-HK induced cell death by inhibiting ROS production and caspase activity.

Ginsentology I: Differential Ca2+ Signaling Regulations by Ginsenosides in Neuronal and Non-neuronal cells

  • Lee, Jun-Ho;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제30권2호
    • /
    • pp.57-63
    • /
    • 2006
  • One of the various signaling agents in the animal cells is the simple ion called calcium, $Ca^{2+}$.$Ca^{2+}$ controls almost everything that animals do, including fertilization, secretion, metabolism, muscle contractions, heartbeat, learning, memory stores, and more. To do all of this, $Ca^{2+}$ acts as an intracellular messenger, relaying information within cells to regulate their activity. In contrast, the maintenance of intracellular high $Ca^{2+}$ concentrations caused by various excitatory agents or toxins can lead to the disintegration of cells (necrosis) through the activity of $Ca^{2+}$-sensitive protein-digesting enzymes. High concentrations of calcium have also been implicated in the more orderly programs of cell death known as apoptosis. Because this simple ion, acts as an agent for cell birth, life and death, to coordinate all of these functions, $Ca^{2+}$ signalings should be regulated precisely and tightly. Recent reports have shown that ginsenosides regulate directly and indirectly intracellular $Ca^{2+}$ level with differential manners between neuronal and non-neuronal cells. This brief review will attempt to survey how ginsenosides differentially regulate intracellular $Ca^{2+}$ signaling mediated by various ion channels and receptor activations in neuronal and non-neuronal cells.

Influence of Aspirin on Pilocarpine-Induced Epilepsy in Mice

  • Jeong, Kyoung Hoon;Kim, Joo Youn;Choi, Yun-Sik;Lee, Mun-Yong;Kim, Seong Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권1호
    • /
    • pp.15-21
    • /
    • 2013
  • Aspirin (acetylsalicylic acid) is one of the most widely used therapeutic agents based on its pharmacological actions, including anti-inflammatory, analgesic, anti-pyretic, and anti-thrombotic effects. In this study, we investigated the effects of aspirin on seizure susceptibility and hippocampal neuropathology following pilocarpine-induced status epilepticus (SE). SE was induced by pilocarpine hydrochloride (280 mg/kg, i.p.) administration in C57BL/6 mice (aged 8 weeks). Aspirin was administered daily (15 mg/kg or 150 mg/kg, i.p.) for 10 days starting 3 days before SE, continuing until 6 days after SE. After pilocarpine injection, SE onset time and mortality were recorded. Neuronal cell death was examined using cresyl violet and Fluoro-Jade staining, and glial responses were observed 7 days post SE using immunohistochemistry. In the aspirin-treated group, the onset time of SE was significantly shortened and mortality was markedly increased compared to the control group. However, in this study, aspirin treatment did not affect SE-induced neuronal cell death or astroglial and microglial responses in the hippocampus. In conclusion, these results suggest that the safety of aspirin should be reevaluated in some patients, especially with neurological disorders such as temporal lobe epilepsy.

당귀용회환(當歸龍薈丸)의 glutamate에 의한 청신경세포(聽神經細胞) 손상(損傷) 보호효과(保護效果) (Protective Effects of Danguiyonghoihwan on Glutamate-induced Auditory Sensorineuronal Cell Death)

  • 유동희;박래길;소홍섭;이기남;정명수
    • 대한예방한의학회지
    • /
    • 제16권2호
    • /
    • pp.95-111
    • /
    • 2012
  • Objective : The water extract of Danguiyonghoihwan (DGYHW) has been traditionally used in treatment of tinnitus in Oriental Medicine. However, little is known about the mechanism by which DGYHW rescues auditory neuronal cells from injury damages. Therefore, in this study I effort to elucidate the mechanism of the cytoprotective effect of the DGYHW extract on glutamate-induced auditory sensorineuronal cell death. Methods : I determined the elevated cell viability by DGYHW extract on glutamate-induced auditory sensorineuronal cell death. Glutamate induced neuronal damage in oranotypic explant culture also, glutamate decreased cell viability on VOT-33 cells but pretreatment with DGYHW inhibited cell death. Results : One of the main mediator of glutamate-induced cytotoxicity was known to generation of reactive oxygen species (ROS). Pretreatment with DGYHW inhibited this ROS generation from glutamated-stimulated VOT-33 cells. Also, I identified that the ROS-induced DCF-DA green fluorescence is reduced by DGYHW pretreatment. The critical markers of apoptotic cell death were cleavages of procaspase-3 protease protein. So I checked the expression level and cleavage of procaspase-3 protease protein. Glutamate-treated VOT-33 cells were shown to have cleavage of procaspase-3 protease proteins and following reduction of expression of these proteins. But I found that pre-treatment with DGYHW protects glutamate-induced changes of biochemical marker protein, caspase-3. Conclusion : These findings indicated that DGYHW may prevent cell death from glutamate induced VOT-33 cell death by inhibiting the ROS generation and modulation of protein expressions in procaspase-3, catalase and Bcl-2.

L-Glutamate에 의한 PC12 세포의 고사성 사망 (Apoptotic Process is Involved in the L-Glutamate-Induced PC12 Cell Death)

  • 성기욱;정경희;김성윤;강정혜;이상복
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권6호
    • /
    • pp.699-705
    • /
    • 1997
  • Although it is known that neuronal cell death during development occurs by apoptosis, the mechanisms underlying excitatory amino acid-induced neuronal cell death remain poorly understood. In this study we have examined the mechanism by which L-glutamate, an excitatory amino acid neurotransmitter, induces cell death in PC12 cell lines. To characterize cell death, we employed sandwich enzyme-linked immunosorbent assay(ELISA) method for cellular DNA fragmentation, DNA agarose gel electrophoresis and chromatin staining by acridine orange and ethidium bromide after treating the PC12 cells with L-glutamate. L-Glutamate caused dose-dependent cell death with a maximum at 24 hrs after the treatment. These cellular fragmentation was blocked by pretreatment of MK-801, a noncompetitive N-methyl-D-aspartic acid(NMDA) receptor antagonist, and nerve growth factor(NGF). Analysis of DNA integrity from L-glutamate-treated cells revealed cleavage of DNA into regular sized fragments, a biochemical hallmark of apoptosis. The PC12 cells that were induced to die by L-glutamate treatment exhibited classical chromatin condensation under the light microscopy after acridine orange and ethidium bromide staining. These results suggest that apoptosis is one of the key features that are involved in L-glutamate-induced excitotoxic cell death in PC12 cells, and these cell death are mediated by NMDA receptor and depend on NGF.

  • PDF

Neuronal Nitric Oxide-mediated Cytotoxicity in Trophoblast Cells Induced by Increase of Intracellular Calcium

  • Shin, Mi-Kyung;Kwon, Yong-Hyun;Shin, Jong-Chul;Yang, Dong-Eun;Lee, Sung-Keun;Kang, Ju-Hee;Park, Chang-Shin
    • Molecular & Cellular Toxicology
    • /
    • 제4권1호
    • /
    • pp.16-21
    • /
    • 2008
  • Cell death of trophoblast, particularly by abnormal release of physiological nitric oxide (NO) has been known to be a causative factor of pre-eclampsia. In the present study, effects of intracellular calcium increase enhancing the activity of NO synthases (neuronal NO synthase, nNOS in this trophoblast cells) on the cell death were examined in a human placental full-term cell line (HT-1). Furthermore, we analyzed the possible mechanisms underlying the augmentation of $Ca^{++}$-mediated NOS activity mediated by protein kinases like PKC, PKA, or CaM-KII. In experiments for cell toxicity, a calcium ionophore (ionomycin $10{\mu}M$) enhanced cell death confirmed by MTT assay, and increased significantly nNOS activity determined with a hemoglobin oxidation assay. This cell death was partially protected by pre-treatment of 7-nitroindazole (7-NI, $10{\mu}M$ and $100{\mu}M$), a nNOS-specific inhibitor. Additionally, $Ca^{++}$-ionophore -induced increase of nNOS activity also was partially normalized by pre-treatment of specific inhibitors of protein kinases, PKC, PKA or CaM-KII. Therefore, we suggest that an increase of calcium influx, leading to the activation of nNOS activity, which in turn may result in the death of trophoblast cells by involvement of signaling mechanisms of protein kinases.

시금치 추출물에 의한 뇌세포 사멸 보호 효과 (Spinacia oleracea Extract Protects against Chemical-Induced Neuronal Cell Death)

  • 박자영;허진철;우상욱;신흥묵;권택규;이진만;정신교;이상한
    • 한국식품저장유통학회지
    • /
    • 제14권4호
    • /
    • pp.425-430
    • /
    • 2007
  • Amyloid ${\beta}-peptide$에 의해 유도되는 세포사멸을 보호하는 물질을 검색하기 위하여 250여 식물 재료 및 식품성분으로부터 스크리닝한 결과 가장 효과가 있는 시금치 추출물을 이용하여 뇌신경세포사멸(neuronal cell death)을 어느 정도 보호할 수 있는지를 알아보았다. 시금치 추출물이 항산화 활성과 acetylcholinesterase 활성에 대한 저해효과는 시금치 추출물 처리농도가 높을수록 유의적으로 높게 나타났다. 과산화수소와 amyloid ${\beta}-peptide$에 의해 유도된 SH-SY5Y 세포주의 세포사멸에 대한 시금치추출액의 억제효과를 살펴본 결과, 과산화수소에 의한 세포사멸에 대하여 시금치 추출물은 억제효과를 나타내었으나, amyloid ${\beta}-peptide$의 경우는 세포사멸억제효과를 나타내지 않았다.

Effects of Cordyceps ophioglossoides extracts on the neuronal death and memory dificits

  • Park, Byung-Chul;Jin, Da-Qing;Beak, Sung-Mok;Lee, Jae-Sung;Choi, Hee-Don;Kim, Jung-Ae
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.124.1-124.1
    • /
    • 2003
  • We investigated whether the mushroom extracts can protect neuronal death and ameliorate memory deficits in Alzheimer"s disease induced by $\beta$-amyloid peptide[A$\beta$(25-35)]. Cellular model of Alzheimer"s disease was produced by using SK-N-SH human neuronal cells treated with $A\beta$. Treatment with 40uM $A\beta$ for 48hours caused a 46% loss of cell viability. First, we examined the effects of 22 mushroom extracts on neuronal death using MTT assay. We found that 3 mushroom extracts increased viability of the cells from 46% to 87%. (omitted)

  • PDF