• Title/Summary/Keyword: neuronal apoptosis

Search Result 294, Processing Time 0.026 seconds

The Caspase-3 and c-myc Expressions in Completely Resected Non-small Cell Lung Cancer and Its Prognostic Significance (완전 절제된 원발성 비소세포 폐암에서 Caspase-3와 c-myc 단백의 발현과 임상 예후)

  • Cho, Deog-Gon;Cho, Kyu-Do;Kang, Chul-Ung;Jo, Min-Seop;Yoo, Jin-Young;Ahn, Myeong-Im;Kim, Chi-Hong;Shim, Byoung-Yong;Kim, Sung-Whan;Kim, Hoon-Kyo
    • Journal of Chest Surgery
    • /
    • v.41 no.4
    • /
    • pp.447-456
    • /
    • 2008
  • Background: Caspase-3 is a cysteine protease that plays a major role in the process of apoptotic cell death. The dysregulated expression of c-myc contributes to the tumorigenesis in a variety of human cancers. The aim of this study was to investigate the expressions of caspase-3 and c-myc and their significances as prognosis markers in patients with completely resected non-small cell lung cancer (NSCLC). Material and Method: A total 130 consecutive patients who had undergone complete resection without pre-operative radio-therapy or chemotherapy between May 1996 and December 2003 for NSCLC were retrospectively reviewed. The median follow-up period of the patients was 50 months (range: $3{\sim}128$ months). The expressions of caspase-3 and c-myc were immuno-histochemically examined, and these were correlated with the clinico-pathologic data. Result: The prevalence of caspase-3 and c-myc expressions in the patients was 68% (88/130) and 59% (77/130), respectively. Significant association was found between the frequency of the expressions of caspase-3 and c-myc (p=0.025). The caspase-3 and c-myc expressions were not significantly associated with the prognosis in all the patients. However, according to stages, a positive caspase-3 expression was significantly correlated with a favorable prognosis for patients with stage IIIa disease (median survival period: 35 months vs. 10 months, p=0.021). Multivariate analysis showed the pathologic stage to be significantly correlated with a good prognosis in all the patients (p=0.024), and with a positive caspase-3 expression, well differentiated tumor and negative neuronal invasion in the patients with stage llla disease (p=0.005, p=0.003, p=0.004, respectively). Conclusion: Caspase-3 and c-myc were frequently expressed in NSCLC, suggesting its possible involvement in tumor development. The caspase-3 expression, as determined with performing immunohistochemical staining, may be a favorable prognostic indicator in patients with completely resected NSCLC an advanced stage (IIIa).

Microarray Analysis of Gene Expression by Rhei Rhizoma Water Extracts in a Hypoxia Model of Cultured Neurons (배양신경세포의 저산소증모델에서 대황 물추출물에 의한 유전자 표현 변화의 microarray 분석)

  • Lee, Hyun-Sook;Song, Jin-Young;Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.21-33
    • /
    • 2009
  • In this study, we investigated the effect of Rhei Rhizoma (RR; 大黃) water extract on gene expression in a hypoxia model of cultured rat hippocampal neurons. RR water extract $(2.5{\mu}g/ml)$ was added to the culture media on day 10 in vitro (DIV10), and a hypoxic shock (2% $O_2$/5% $CO_2$, $37^{\circ}C$, 3 h) was given on DIV13. After maintaining the cultures in normoxia for 24 hr, total RNA was isolated and used for microarray analysis. The MA-plot indicated that most genes were up- or downregulated within 2-fold. There were more downregulated genes (725 ea) than upregulated ones (472 ea) when larger than Global M value 0.2 (i.e., >15% increase) or smaller than Global M value -0.2 (i.e., >15% decrease) were considered. Antiapoptosis genes such as Tegt (2.4-fold), Nfkb1 (2.4-fold) Veg (1.8-fold), Ngfr (1.6-fold) were upregulated, while pro-apoptosis genes such as Bad (-64%), Cstb (-66%) were downregulated. Genes for combating environmental stress (stress response genes) such as Defb3 (2.7-fold), Cygb (2.2-fold), Ahsg (2.18-fold), Alox5 (2-fold) were upregulated. Genes for cell proliferation (cell cycle-related genes) such as Erbb2 (1.84-fold), Mapk12 gene (1.8-fold) was upregulated. Therefore, RR water extracts upregulate many pro-survival genes while downregulating many pro-death genes. It is interpreted that these genes, in combination with other regulated genes, can promote neuronal survival in a stress such as hypoxia.

Protective Effect of Green Tea Extract on Amyloid $\beta$ peptide-induced Neurotoxicity (아밀로이드베타 펩타이드 유도성 신경세포독성에 대한 녹차 추출물의 보호 효과)

  • Kim, Young-In;Park, Jeong-Yoon;Choi, Soo-Jung;Kim, Jae-Kyeom;Jeong, Chang-Ho;Choi, Sung-Gil;Lee, Seung-Cheol;Cho, Sung-Hwan;Heo, Ho-Jin
    • Food Science and Preservation
    • /
    • v.15 no.5
    • /
    • pp.743-748
    • /
    • 2008
  • Amyloid $\beta$ peptide ($A{\beta}$) is known to increase oxidative stress in nerve cells, leading to apoptosis that is characterized by free radical formation and lipid peroxidation. Neurodegenerative diseases such as Alzheimer's disease (AD) are characterized by large deposits of $A{\beta}$ in the brain. In our study, neuronal protective effects of green tea, along with water activity (0.813), and leaf storage periods (fresh leaf, or leaf stored for up to 4 weeks) were investigated. We measured protective effects against $A{\beta}$-induced cytotoxicity in neuron-like PC12 cells. Powdered green tea was extracted with distilled water at $70^{\circ}C$ for 5 min, and this extract was freeze-dried and stored at $-20^{\circ}C$ until use. In cell viability assays using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), the fresh extract, and that obtained after 1 week of leaf storage, showed the best protective effects against $A{\beta}$-induced neurotoxicity. As oxidative stress causes membrane breakdown, the protective effect of green tea extracts was investigated using lactate dehydrogenase (LDH) and trypan blue exclusion assays. LDH release into the medium was inhibited (by 20-25%) in all tests. In addition, all green tea extracts (fresh, or stored before extraction for up to 4 weeks) showed better cell protective effects ($93.3{\pm}1.8-96.2{\pm}2.4$) than did vitamin C ($91.0{\pm}1.6$), used as a positive control. The results suggest that effectiveness of green tea extracts falls with prolonged leaf storage.

Ginsenoside compound K protects against cerebral ischemia/ reperfusion injury via Mul1/Mfn2-mediated mitochondrial dynamics and bioenergy

  • Qingxia Huang;Jing Li;Jinjin Chen;Zepeng Zhang;Peng Xu;Hongyu Qi;Zhaoqiang Chen;Jiaqi Liu;Jing Lu;Mengqi Shi;Yibin Zhang;Ying Ma;Daqing Zhao;Xiangyan Li
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.408-419
    • /
    • 2023
  • Background: Ginsenoside compound K (CK), the main active metabolite in Panax ginseng, has shown good safety and bioavailability in clinical trials and exerts neuroprotective effects in cerebral ischemic stroke. However, its potential role in the prevention of cerebral ischemia/reperfusion (I/R) injury remains unclear. Our study aimed to investigate the molecular mechanism of ginsenoside CK against cerebral I/R injury. Methods: We used a combination of in vitro and in vivo models, including oxygen and glucose deprivation/reperfusion induced PC12 cell model and middle cerebral artery occlusion/reperfusion induced rat model, to mimic I/R injury. Intracellular oxygen consumption and extracellular acidification rate were analyzed by Seahorse multifunctional energy metabolism system; ATP production was detected by luciferase method. The number and size of mitochondria were analyzed by transmission electron microscopy and MitoTracker probe combined with confocal laser microscopy. The potential mechanisms of ginsenoside CK on mitochondrial dynamics and bioenergy were evaluated by RNA interference, pharmacological antagonism combined with co-immunoprecipitation analysis and phenotypic analysis. Results: Ginsenoside CK pretreatment could attenuate mitochondrial translocation of DRP1, mitophagy, mitochondrial apoptosis, and neuronal bioenergy imbalance against cerebral I/R injury in both in vitro and in vivo models. Our data also confirmed that ginsenoside CK administration could reduce the binding affinity of Mul1 and Mfn2 to inhibit the ubiquitination and degradation of Mfn2, thereby elevating the protein level of Mfn2 in cerebral I/R injury. Conclusion: These data provide evidence that ginsenoside CK may be a promising therapeutic agent against cerebral I/R injury via Mul1/Mfn2 mediated mitochondrial dynamics and bioenergy.