• Title/Summary/Keyword: neuronal apoptosis

Search Result 295, Processing Time 0.028 seconds

MiR-30a-5p and miR-153-3p regulate LPS-induced neuroinflammatory response and neuronal apoptosis by targeting NeuroD1

  • Choi, Hye-Rim;Ha, Ji Sun;Kim, Eun-A;Cho, Sung-Woo;Yang, Seung-Ju
    • BMB Reports
    • /
    • v.55 no.9
    • /
    • pp.447-452
    • /
    • 2022
  • Neurogenic differentiation 1 (NeuroD1) is an essential transcription factor for neuronal differentiation, maturation, and survival, and is associated with inflammation in lipopolysaccharide (LPS)-induced glial cells; however, the concrete mechanisms are still ambiguous. Therefore, we investigated whether NeuroD1-targeting miRNAs affect inflammation and neuronal apoptosis, as well as the underlying mechanism. First, we confirmed that miR-30a-5p and miR-153-3p, which target NeuroD1, reduced NeuroD1 expression in microglia and astrocytes. In LPS-induced microglia, miR-30a-5p and miR-153-3p suppressed pro-inflammatory cytokines, reactive oxygen species, the phosphorylation of c-Jun N-terminal kinase, extracellular-signal-regulated kinase (ERK), and p38, and the expression of cyclooxygenase and inducible nitric oxide synthase (iNOS) via the NF-κB pathway. Moreover, miR-30a-5p and miR-153-3p inhibited the expression of NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasomes, NLRP3, cleaved caspase-1, and IL-1β, which are involved in the innate immune response. In LPS-induced astrocytes, miR-30a-5p and miR-153-3p reduced ERK phosphorylation and iNOS expression via the STAT-3 pathway. Notably, miR-30a-5p exerted greater anti-inflammatory effects than miR-153-3p. Together, these results indicate that miR-30a-5p and miR-153-3p inhibit MAPK/NF-κB pathway in microglia as well as ERK/STAT-3 pathway in astrocytes to reduce LPS-induced neuronal apoptosis. This study highlights the importance of NeuroD1 in microglia and astrocytes neuroinflammation and suggests that it can be regulated by miR-30a-5p and miR-153-3p.

Alpha-lipoic acid protects human dopaminergic neuronal cells against hydrogen peroxide-induced cell injury by inhibiting autophagy and apoptosis

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Kim, Tae-Hyeon;Seo, Jeong-Yeon;Lim, HyangI;Park, Jong-Hyun;Yang, Kwang Yeol;Yu, Sun-Kyoung;Kim, Heung-Joong;Kim, Chun Sung;Chun, Hong Sung;Lee, Dong-Seol;Park, Joo-Cheol;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.46 no.1
    • /
    • pp.15-22
    • /
    • 2021
  • Alpha-lipoic acid (ALA) is a naturally occurring antioxidant and has been previously used to treat diabetes and cardiovascular disease. However, the autophagy effects of ALA against oxidative stress-induced dopaminergic neuronal cell injury remain unclear. The aim of this study was to investigate the role of ALA in autophagy and apoptosis against oxidative stress in the SH-SY5Y human dopaminergic neuronal cell line. We examined SH-SY5Y phenotypes using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay (cell viability/proliferation), 4′,6-diamidino-2-phenylindole dihydrochloride nuclear staining, Live/Dead cell assay, cellular reactive oxygen species (ROS) assay, immunoblotting, and immunocytochemistry. Our data showed ALA attenuated hydrogen peroxide (H2O2)-induced ROS generation and cell death. ALA effectively suppressed Bax up-regulation and Bcl-2 and Bcl-xL down-regulation. Furthermore, ALA increased the expression of the antioxidant enzyme, heme oxygenase-1. Moreover, the expression of Beclin-1 and LC-3 autophagy biomarkers was decreased by ALA in our cell model. Combined, these data suggest ALA protects human dopaminergic neuronal cells against H2O2-induced cell injury by inhibiting autophagy and apoptosis.

Effect of Ethanol on Mouse Brain Cell

  • Jang, Hyung Seok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.1
    • /
    • pp.51-58
    • /
    • 2015
  • Ethanol has long been implicated in triggering apoptotic neurodegeneration. Alcohol also may indirectly harm the fetus by imparing the mother's physiology. We examined the effects of ethanol on immature brain of mice. Three-weeks-old female ICR strain mice daily intraperitoneally injected with ethanol at the concentration of 4 and 20% in saline for 0, 6, and 24 hours and 1 and 4 weeks. The mice were weighted and sacrificed, and the brains were ectomized for the present histological, immunohistochemical and TUNEL assays. Based on the histologic hematoxylin and eosin stain, immunohistochemical expression of glutamate receptor protein and neuronal cell adhesion molecule (NCAM) were evaluated. The cerebral cortex of the ethanol-treated group showed few typical symptoms of apoptosis such as chromosome condensation and disintegration of the cell bodies. TUNEL staining revealed DNA fragmentation in the 6 and 24 hours. This results demonstrated that acute ethanol administration causes neuronal cell death. I found that either glutamate receptor inhibition or activation could induce cerebellar degeneration as ethanol effect. Neuronal death also can be induced by excess activity of certain neurotransmitter, including glutamate. Neurons must establish cell-to-cell contact during growth and development in order to survive, migrate to their final destination, and develop appropriate connections with neighboring cell. Purkinje cell in cerebellar are especially vulnerable to the cell death and degeneration. After ethanol treatment in cerebellar, NCAM had decreased by 4 weeks. This result suggest that apoptosis seems to be involved in the slow elimination of neuron and cerebellar degeneration.

Protective Effects of Hwansodan(Huanshao-dan) Water Extract in Serum Deprivation-induced Apoptosis of PC12 Cells (환소단이 영양혈청 결핍성 PC12 신경세포의 apoptosis에 미치는 영향)

  • 임준식;김명선;소홍섭;이지현;한상혁;허윤;박래길;문병순
    • The Journal of Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.64-72
    • /
    • 2000
  • Objectives : This study was designed to investigate the neuroprotective effect of Hwansodan(Huanshao-dan) on the apoptosis induced by withdrawal of neurotrophic support. Methods : PCl2 pheochromocytoma cells have been used extensively as a model for studying the cellular and molecular effects of neuronal cells. The viability of cells was measured by MTT assay. We used DNA fragmentation and caspase 3-like protease activation assay. Results : The water extract of Hwansodan(Huanshao-dan) significantly showed protective effects on serum and glucose deprivation-induced apoptotic death. Hwansodan(Huanshao-dan) also prevents DNA fragmentation and caspase 3-like protease activation, representing typical neuronal apoptotic phenomena in PCl2 pheochromocytoma cells and induces tyrosine phosphorylation of proteins around 44 kDa, which was identified as ERK1 with electrophoretic gel mobility shift by Western blot. In addition, MAPK kinase(MEK) inhibitor PD98059 and Ras inactivator, ${\alpha}-hydroxyfarnesylphosphonic$ acid attenuated the neuroprotective effects of Hwansodan(Huanshao-dan) in serum-deprived PCl2 cells. Conclusions : These results indicate that Ras/MEK/ERK signaling pathway plays a key role in neuroprotective effects of Hwansodan(Huanshao-dan) in serum-deprived PCl2 cells. Taken together, we suggest the possibility that Hwansodan(Huanshao-dan) might provide a neurotrophic-like activity in PCl2 cells.

  • PDF

Effects of Salvia Miltriorrhiza Radix on Neuronal Apoptosis following Intracerebral Hemorrhage of Rats (단삼(丹蔘)이 뇌조직출혈 흰쥐의 신경세포 자연사에 미치는 영향)

  • Lee, Hung-Gi;Kim, Youn-Sub
    • The Korea Journal of Herbology
    • /
    • v.27 no.3
    • /
    • pp.89-94
    • /
    • 2012
  • Objects : The purpose of this study was to observe the effect of Salviae Miltriorrhiza Radix(SMR) water-extract on intracerebral hemorrhage(ICH) and neuronal apoptosis in the injured areas. Method : ICH was induced by the stereotaxic intrastriatal injection of bacterial collagenase type IV in Sprague-Dawley rats. The rats were givened oral SMR treatment once a day for three days after the ICH treatment. TUNEL positive cells in the affected regions were performed by TUNEL assay, Bax and Bcl-2 positive cells by immunohistochemistry and the Bax expression by western blotting method. Results : The results are as follow; 1. SMR significantly reduced the number of TUNEL positive cells in the peri-hematoma reigions of ICH-induced rats. 2. SMR significantly reduced the number of Bax positive cells in the peri-hematoma regions of ICH-induced rats. 3. SMR did not affect the number of Bcl-2 positive cells in the peri-hematoma regions of ICH-induced rats. 4. SMR significantly reduced the Bax expressions compared with ICH group in hemorrhagic hemisphere of ICH-induced rats. Conclusion : These results suggest that SMR is effective in reducing neuronal apoptosis.

Protective effects of perilla oil and alpha linolenic acid on SH-SY5Y neuronal cell death induced by hydrogen peroxide

  • Lee, Ah Young;Choi, Ji Myung;Lee, Myoung Hee;Lee, Jaemin;Lee, Sanghyun;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.12 no.2
    • /
    • pp.93-100
    • /
    • 2018
  • BACKGROUND/OBJECTIVE: Oxidative stress plays a key role in neuronal cell damage, which is associated with neurodegenerative disease. The aim of present study was to investigate the neuroprotective effects of perilla oil (PO) and its active component, alpha-linolenic acid (ALA), against hydrogen peroxide $(H_2O_2)$-induced oxidative stress in SH-SY5Y neuronal cells. MATERIALS/METHODS: The SH-SY5Y human neuroblastoma cells exposed to $250{\mu}M$ $H_2O_2$ for 24 h were treated with different concentrations of PO (25, 125, 250 and $500{\mu}g/mL$) and its major fatty acid, ALA (1, 2.5, 5 and $25{\mu}g/mL$). We examined the effects of PO and ALA on $H_2O_2$-induced cell viability, lactate dehydrogenase (LDH) release, and nuclear condensation. Moreover, we determined whether PO and ALA regulated the apoptosis-related protein expressions, such as cleaved-poly ADP ribose polymerase (PARP), cleaved caspase-9 and -3, BCL-2 and BAX. RESULTS: Treatment of $H_2O_2$ resulted in decreased cell viability, increased LDH release, and increase in the nuclei condensation as indicated by Hoechst 33342 staining. However, PO and ALA treatment significantly attenuated the neuronal cell death, indicating that PO and ALA potently blocked the $H_2O_2$-induced neuronal apoptosis. Furthermore, cleaved-PARP, cleaved caspase-9 and -3 activations were significantly decreased in the presence of PO and ALA, and the $H_2O_2$-induced up-regulated BAX/BCL-2 ratio was blocked after treatment with PO and ALA. CONCLUSIONS: PO and its main fatty acid, ALA, exerted the protective activity from neuronal oxidative stress induced by $H_2O_2$. They regulated apoptotic pathway in neuronal cell death by alleviation of BAX/BCL-2 ratio, and down-regulation of cleaved-PARP and cleaved caspase-9 and -3. Although further studies are required to verify the protective mechanisms of PO and ALA from neuronal damage, PO and ALA are the promising agent against oxidative stress-induced apoptotic neuronal cell death.

Protective Effects of Boyanghwanoh-tang on Serum and Glucose Deprivation-induced Apoptosis of PC12 Cells (보양환오탕이 영양혈청결핍에 의한 PC12 세포의 고사에 미치는 영향)

  • 김종길;정승원;임준모;장호현;윤종민;이기상;문병순
    • The Journal of Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.179-192
    • /
    • 2003
  • Objectives : Boyanghwanoh-tang (Buyanhaiwu-tang) has been used as a prescription for stroke, senile and vascular dementia, ischemic brain and heart damage in Oriental traditional medicine. However, there is little known about the mechanism by which the water extracts of Boyanghwanoh-tang (Buyanhaiwu-tang) rescue cells fromthese damages, and little is known about the protective mechanisms of Boyanghwanoh-tang (Buyanhaiwu-tang) on oxidative stress in neuronal cells. Therefore, we have investigated the role of Boyanghwanoh-tang (Buyanhaiwu-tang) on serum and glucose deprived apoptosis in PC12 cells. Methods : PC12 Cells have been used extensively as a model for studying the cellular and molecular effects of neuronal cells. The viability of cells was measured by MIT assay. We used DNA fragmentation and caspase 1, 2, 3, 6, 9-likeproteases activation assay. Transcriptional activation of NF-kB was assessed by using electrophoretic mobility shift assay. Results : Boyanghwanoh-tang (Buyanhaiwu-tang) rescued PC12 cells from apoptotic death by serum and glucose deprivation in a dose-dependent manner. The nuclear staining of PC12 cells clearly showed that Boyanghwanoh-tang (Buyanhaiwu-tang) attenuated nuclear condensation and fragmentation, which represent typical neuronal apoptotic characteristics. Boyanghwanoh-tang (Buyanhaiwu-tang) also prevents fragmentation of genomic DNA and activation of caspase 3-like protease in serum and glucose deprived PC12 cells. Furthermore, Boyanghwanoh-tang (Buyanhaiwu-tang) reduced the activation of NF-kB by serum and glucose-deprived apoptosis. Conclusions : These findings suggest that serum and glucose deprivation induces reduced glutathione (GSH) depletion, and consequently, apoptosis through endogenously produced reactive oxygen species in PC12 cells. Also, our data indicated that Boyanghwanoh-tang (Buyanhaiwu-tang) has protective effects against the serum and glucose deprived deaths of PC12 cells, which are mediated by the generation of GSH that, in turn, can reduce oxidative stress caused by reactive oxygen species (ROS) such as hydrogen peroxide.

  • PDF

Overexpression of Bcl-2 protects differentiated PC12 cells against beta amyloid- induced apoptosis through inhibition of NF-kB and p38 MAP kinase activation

  • Song, Youn-Sook;Park, Hye-Ji;Hwang, In-Young;Lee, Sun-Young;Yun, Yeo-Pyo;Lee, Myung-Koo;Oh, Ki-Wan;Hong, Jin-Tae
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.197.2-198
    • /
    • 2003
  • Activation of the apoptosis program by an increased production of beta-amyloid peptides (A${\beta}$) has been implicated in the neuronal cell death of Alzheimer's disease. Bcl-2 is a well demonstrated anti-apoptotic protein, however, the mechanism of anti-apoptotic action of Bcl-2 in A${\beta}$-induced apoptosis of neuronal cells is not fully understood. (omitted)

  • PDF

Effects of Polygalae Radix on Brain Tissue Oxidative Damage and Neuronal Apoptosis in Hippocampus Induced by Cerebral Hypoperfusion in Rats (원지(遠志)가 뇌혈류 저하에 의한 흰쥐 뇌조직의 산화적 손상과 해마신경세포 자연사에 미치는 영향)

  • Koo, Yong-Mo;Kwak, Hee-Jun;Kwon, Man-Jae;Song, Mincheol;Lee, Ji-Seung;Shin, Jung-Won;Sohn, Nak-Won
    • The Korea Journal of Herbology
    • /
    • v.31 no.1
    • /
    • pp.7-15
    • /
    • 2016
  • Objectives : Polygalae Radix (POL) has an ameliorating effect on learning and memory impairment caused by cerebral hypoperfusion. In regard to POL's action mechanism, this study was carried out to investigate the effects of POL on oxidative damage and neuronal apoptosis induced by cerebral hypoperfusion in rats.Methods : The cerebral hypoperfusion was induced by permanent bilateral common carotid artery occlusion (pBCAO) in Sprague-Dawley rats. POL was administered orally once a day (130 mg/kg of water-extract) for 28 days starting at 4 weeks after the pBCAO. Superoxide dismutase (SOD) activities and malondialdehyde (MDA) levels in the brain tissue were measured using ELISA method. Expressions of 4-hydroxynonenal (4HNE) and 8-hydroxy-2'- deoxyguanosine (8-OHdG) were observed using immunohistochemistry. In addition, neuronal apoptosis was evaluated with Cresyl violet staining, TUNEL labeling, and immunohistochemistry against Bax and caspase-3.Results : POL treatment significantly increased SOD activities and significantly reduced MDA levels in the cerebral cortex. The up-regulations of 4HNE and 8-OHdG expression caused by pBCAO in the CA1 of hippocampus were significantly attenuated by POL treatment. POL treatment also restored the reduction of CA1 thickness and CA1 neurons caused by pBCAO and significantly attenuated the apoptotic markers including TUNEL-positive cells, Bax, and caspase-3 expression in the CA1 of hippocampus.Conclusions : The results show that POL attenuated the oxidative damage in brain tissue and neuronal apoptosis in the hippocampus caused by the cerebral hypoperfusion. It suggests that POL can be a beneficial medicinal herb to treat the brain diseases related to cerebral hypoperfusion.

Neuroprotective Effects of Kaempferol, Quercetin, and Its Glycosides by Regulation of Apoptosis (Kaempferol, quercetin 및 그 배당체들의 apoptosis 조절을 통한 신경세포 보호 효과)

  • Kim, Ji Hyun;Lee, Sanghyun;Cho, Eun Ju;Kim, Hyun Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.286-293
    • /
    • 2019
  • Alzheimer's disease (AD) is a neurodegenerative disease caused by accumulation of amyloid beta ($A{\beta}$) in the brain. In the present study, we investigated the neuroprotective effects of four flavonoids such as kaempferol, kaempferol-3-O-glucoside, quercetin, and quercetin-3-${\beta}$-D-glucoside against neuronal apoptosis induced by $A{\beta}$ in SH-SY5Y neuronal cells. Treatment with $A{\beta}$ decreased cell viability compared to the non-treated normal group. However, treatment with the four flavonoids increased cell viability in SH-SY5Y cells treated with $A{\beta}$. In addition, we measured the expression of apoptosis-related proteins such as Bcl-2-associated X protein (Bax) and cleaved caspase-9. Treatment with the four flavonoids down-regulated Bax and cleaved caspase-9 in $A{\beta}$-treated SH-SY5Y neuronal cells. Overall, the results of the present study demonstrated the neuroprotective effect of flavonoids by anti-apoptotic activity in $A{\beta}$-induced SH-SY5Y neuronal cells. These results suggest that these four flavonoids would be useful therapeutic and prevention agents for AD.