• Title/Summary/Keyword: neuronal

Search Result 2,066, Processing Time 0.027 seconds

Cerebral-perfusion Reserve after Carotid-artery Stenting: Relationship with Power Spectrum of Electroencephalography (경동맥스텐트삽입술 후의 뇌관류예비능: 뇌파파워스펙트럼과의 연관성)

  • Jeong, Da-hye;Jung, Seokwon;Kwak, Byeonggeun;Kim, Young-Soo;Kim, Soo-kyoung;Kwon, Oh-Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.2
    • /
    • pp.144-152
    • /
    • 2016
  • Carotid-artery stenosis may reduce cerebral perfusion, and affect cerebral neuronal activities. We examined the question of whether the recovery of cerebral-perfusion reserve after carotid-artery stenting (CAS) can affect the EEG power-spectrum. Nineteen candidates for CAS were initially recruited. Subtraction imaging of single photon emissary computerized tomography (SPECT) and an electroencephalogram (EEG) were taken twice, before and 1 month after CAS. At each time point, the EEGs were recorded before and after injection of acetazolamide (pre-ACZ EEG and post-ACZ EEG). Finally, 7 patients were enrolled after exclusion of incomplete studies. We obtained the spectral ratio (SR) of each hemisphere. SR was defined as the divided value of the power-spectrum sum of fast activities by that of slow activities. The power-spectrum values between hemispheres were compared using the inter-hemispheric index of spectral ratio (IHISR), and we examined the correlation between the power-spectrum and the cerebral-perfusion reserve. Cerebral-perfusion reserve improved after CAS on the stent side in 6 of 7 patients. In 3 patients with unilateral carotid-artery stenosis, CAS increased SR on the pre-ACZ EEGs, and IHISR on the post-ACZ EEGs. The increases of SR and IHISR were concordant with the increment of cerebral-perfusion reserve. In contrast, the results in the other patients with bilateral stenosis showed complex patterns. The SR of pre-ACZ EEGs and IHISR of post-ACZ EEGs may be useful electrophysiological markers for the blood-flow reserve after CAS in patients with unilateral carotid-artery stenosis, but not in those with bilateral stenosis.

Neuroprotection of Recombinant Human Erythropoietin Via Modulation of N-methyl-D-aspartate Receptors in Neonatal Rats with Hypoxic-ischemic Brain Injury (신생 백서의 저산소성 허혈성 뇌손상에서 NMDA receptor 조절을 통한 유전자 재조합 인 에리스로포이에틴의 신경보호)

  • Jang, Yoon-Jung;Seo, Eok-Su;Kim, Woo-Taek
    • Neonatal Medicine
    • /
    • v.16 no.2
    • /
    • pp.221-233
    • /
    • 2009
  • Purpose: Erythropoietin (EPO) has neuroprotective effects in many animal models of brain injury, including hypoxic-ischemic (HI) encephalopathy, trauma, and excitotoxicity. Current studies have demonstrated the neuroprotective effects of EPO, but limited data are available for the neonatal periods. Here in we investigated whether recombinant human EPO (rHuEPO) can protect the developing rat brain from HI injury via modulation of NMDA receptors. Methods: In an in vitro model, embryonic cortical neuronal cell cultures from Sprague-Dawley (SD) rats at 19-days gestation were established. The cultured cells were divided into five groups: normoxia (N), hypoxia (H), and 1, 10, and 100 IU/mL rHuEPO-treated (H+E1, H+ E10, and H+E100) groups. To estimate cell viability and growth, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay was done. In an in vivo model, left carotid artery ligation was performed on 7-day-old SD rat pups. The animals were divided into six groups; normoxia control (NC), normoxia Sham-operated (NS), hypoxia-ischemia only (H), hypoxia-ischemia+vehicle (HV), hypoxia-ischemia+rHuEPO before a HI injury (HE-B), and hypoxia-ischemia+rHuEPO after a HI injury (HE-A). The morphologic changes following brain injuries were noted using hematoxylin and eosin (H/E) staining. Real-time PCR using primers of subunits of NMDA receptors (NR1, NR2A, NR2B, NR2C and NR2D) mRNA were performed. Results: Cell viability in the H group was decreased to less than 60% of that in the N group. In the H+E1 and H+E10 groups, cell viability was increased to >80% of the N group, but cell viability in the H+E100 group did not recover. The percentage of the left hemisphere area compared the to the right hemisphere area were 98.9% in the NC group, 99.1% in the NS group, 57.1% in the H group, 57.0% in the HV group, 87.6% in the HE-B group, and 91.6% in the HE-A group. Real-time PCR analysis of the expressions of subunits of NMDA receptors mRNAs in the in vitro and in vivo neonatal HI brain injuries generally revealed that the expression in the H group was decreased compared to the N group and the expressions in the rHuEPO-treated groups was increased compared to the H group. Conclusion: rHuEPO has neuroprotective property in perinatal HI brain injury via modulation of N-methyl-D-aspartate receptors.

Dynamin II Expression and Morphological Comparison of NIH3T3 and NIH3T3 (ras) Cells (NIH3T3와 NIH3T3(ras) 세포에서 Dynamin II 발현 및 형태적 비교)

  • Lee, Chul-Woo;Kim, Su-Gwan;Choi, Jeong-Yun;Choi, Baik-Dong;Bae, Chun-Sik;Jeong, Soon-Jeong;Jeong, Moon-Jin
    • Applied Microscopy
    • /
    • v.35 no.3
    • /
    • pp.121-128
    • /
    • 2005
  • It has been known that ras signaling transduction leads to cell proliferation and migration including various adaptor molecules. Dynamin protein has been implicated in the formation of nascent vesicles in both the endocytic and secretory pathways. Dynamin was classified into three isoforms: dynamin I is only expressed in neuronal tissue, dynamin II is expressed ubiquitously in all tissue but that of dynamin III is confined to testis. We have reported in previous study that Grb2, binding to ras, was associated with dynamin II in NIH3T3 cells. Therefore we have tried to identify the relative expression of dynamin II according to overexpressed ras protein in ras oncogene transfected cells (NIH3T3 (ras)). For the detection of differential expression of dynamin II, we have used immunofluorescent staining and western blot methods in NIH3T3 and NIH3T3 (ras) cells. Next we have described the morphological differences between NIH3T3 and NIH3T3 (ras) cells using SEM and TEM. From these experiments dynamin II was highly expressed in NIH3T3 (ras) cells. NIH3T3 cells was transformed to more spindle shape with many cell process by transfection of ras oncogene. Moreover dynamin II was more concentrated in endocytotic membrane of the NIH3T3 (ras) cells compared to that of NIH3T3 cells. The present results suggested that dynamin II may involve the intermediate messenger in Ras signaling transduction pathway.

Expression of NGF in Estradiol Valerate-Induced Polycystic Ovary and CHO Cells (Estradiol Valerate에 의해 유도된 다낭성난소와 CHO세포에서 NGF발현)

  • Choi, Baik-Dong;Jeong, Soon-Jeong;Jeong, Moon-Jin;Lim, Do-Seon;Lee, Soo-Han;Kim, Seung-Hyun;Go, A-Ra;Kim, Se-Eun;Kang, Seong-Soo;Bae, Chun-Sik
    • Applied Microscopy
    • /
    • v.41 no.2
    • /
    • pp.109-116
    • /
    • 2011
  • Polycystic ovary syndrome (PCOS) is hormonal imbalance condition as the endocrine and metabolic disorder that induces the infertility and various complications in reproductive age women. Estradiol valerate (EV) is used hormone replacement therapy in menopausal women and is reported that excessive administration of EV induces the PCOS. Nerve growth factor (NGF) is the factor to regulate the survival and maturation of developing neuronal cell and is also synthesized in ovary. And NGF is overexpressed in EV-induced polycystic ovary (PCO) as previously reported. Therefore, this study examined the possibility of NGF as can be used the biological marker in diagnosis of PCOS, the hormonal imbalance condition, using PCO and CHO (chinese hamster ovarian) cell lines. The concentration of EV treatment is optimized a 1 mg as not influence on the proliferation of CHO cell but 2 mg and 3 mg of EV treatment have the inhibition effect at initial stage. The morphological change was not observed in CHO cell after dose dependent manner treatment of EV. Expression of NGF mRNA and protein is significantly increased at 30 min after EV treatment in CHO cells compared to that of control. And NGF protein expression is strongly increased in PCO tissue, which observed many follicular cysts compared to normal ovary tissue. Taken together, overexpression of NGF may be act as a molecule to induce an abnormal development of follicle, suggesting that NGF can be used as a biological marker in diagnosis of PCOS.

Expression of Neuronal Nitric Oxide Synthase (nNOS) in Developing Rat Kidney (분화중인 흰쥐 콩팥의 요세관에서 nNOS의 발현)

  • Song, Ji-Hyun;Ryu, Si-Yun;Kim, Jin;Jung, Ju-Young
    • Applied Microscopy
    • /
    • v.38 no.2
    • /
    • pp.141-148
    • /
    • 2008
  • Nitric oxide (NO) is an important regulator of renal blood flow, glomerular hemodynamics, and tubule transport processes in the kidney. There is also evidence that NO is involved in cell cycle regulation and mitotic division. During development the nNOS expression pattern differs from that observed in adult animals. However, little is known about temporal and spatial patterns of nNOS expression in the developing kidney. The purpose of this study was to establish the time of expression and the distribution of nNOS in the developing rat kidney. Kidneys from 14-, 16-, 17-, 18-, and 20-day-old fetuses, 1-, 4-, 7-, 14-, and 21-day-old pups, and adult animals were preserved and processed for immunohistochemistry. In the adult kidney, nNOS was detected in the parietal epithelium of Bowman s capsule, macula densa, descending thin limb and inner medullary collecting duct. nNOS immunoreactivity appeared first in the distal tubule anlage at 15 days of gestation, and in all epithelial cells of developing thick ascending limbs (TAL) as well as macula densa of 17- and 18-day-old fetuses. From 20 days of gestation to 14 days after birth, nNOS was expressed in the newly formed cortical TAL, which are located in the medullary ray, whereas in mature TAL of juxtamedullary nephrons, nNOS immunolabeling gradually decreased in intensity and became restricted to the macula densa. In inner medullary collecting ducts, nNOS immunoreactivity appeared first at 7 days after birth in the papillary tip and gradually ascended to the border between outer and inner medulla. In the descending thin limb and parietal epithelium of Bowman's capsule, weak nNOS immunoreactivity was observed at 14 days after birth and labeling gradually increased to adult levels at 21 days after birth. These results suggest that differential expression of nNOS in the developing kidney is an important physiological regulator of renal function during kidney maturation.

Immunohistochemical and Ultrastructural Characterization of the Choline Acetyltransferase-immunoreactive Nerve Cells in the Diagonal Band of Broca of the Rat Basal Forebrains (흰쥐의 전뇌 기저부 대각 Broca대에서 Choline Acetyltransferase 면역반응 신경세포에 대한 면역조직화학 및 미세구조)

  • Back, Seung-Keun;Chung, Young-Wha
    • Applied Microscopy
    • /
    • v.29 no.3
    • /
    • pp.383-403
    • /
    • 1999
  • This study was performed to investigate the immunohistochemical and ultrastructural characterization of the choline acetyltransferase (ChAT)-immunoreactive nerve cells in the diagonal band of Broca of the rat basal forebrains, utilizing techniques of immunohistochemical and immunocytochemical microscopy. The ChAT-immunoreactivities were shown within neuronal cell bodies and processes by the light micoscope. According to cell shape and ratio of long axis vs short axis of cell body, the ChAT-immunoreaclive nerve cells in both vertical and horizontal limbs of the diagonal band of Broca were classified into 6 types. at the light microscopic level; round, oval, elongated, fusiform, triangular and polygonal types. As a result of the electron microscopic observation, the ChAT-immunoreactivated products appeared on the outer nuclear envelope, membranes of rough endoplasmic reticula (rER), free ribosomes and polysomes. Each cell type was subdivided into subtype I and II according to the several criteria such as volume of cell body, nuclear size relative to the cytoplasm, kinds and distribution of cell organelles and numbers and sorts of synapses. The subtype I of immnunoreactive nerve cells had large cell body and a small nucleus showing shallow indentations of nuclear evelope. In this subtype I with abundant cytoplasm, rER were well differentiated. Their long cisternae were parallelly ditributed and lamellated. One or two lamellar bodies and nematosomes were observed. The subtype II cell had small cell body and a large nucleus with deep indentations of nuclear envelope. In this subtype II with small cytoplasm, the rER were irregularly distributed and the lamellar body and nematosome were not found. A few axosomatic synapses in the subtype I and II were shown to be symmetric or asymmetric. The ratios of the symmetric synapse to the asymmetric one were investigated to be 1 : 2 and 1 : 4 in the subtype I and II, respectively. The axodendritic ones were almost asymmetric. But, the fusiform and triangular immunoreactive nerve cells were shown only to be subtype I. According to observations in this study, it is considered that the ultrastructural characterization in the 2 subtypes of each cell type may reflect the differences of the metabolic activities and projecting distances to the target cells.

  • PDF

Industrial potential of domestic Zanthoxylum piperitum and Zanthoxylum schinifolium: Protective effect of both extracts on high glucose-induced neurotoxicity (국내산 초피와 산초의 산업적 활용 가능성: 고당으로 유도된 뇌신경세포 독성에 대한 추출물의 보호 효과)

  • Han, Hye Ju;Park, Seon Kyeong;Kim, Min Ji;An, Jun Woo;Lee, Se Jin;Kang, Jin Yong;Kim, Jong Min;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.274-283
    • /
    • 2020
  • This study focused on the in vitro investigation of antioxidant and anti-diabetic activities, along with neuroprotection against high glucose-induced cytotoxicity, in order to evaluate the physiological effects of Zanthoxylum piperitum and Zanthoxylum schinifolium. The highest total phenolic content was measured in the 40% ethanolic extracts of Zanthoxylum piperitum (EZP) and Zanthoxylum schinifolium (EZS). The in vitro EZP antioxidant activity showed a relatively higher ABTS/DPPH radical scavenging activity and malondialdehyde inhibitory effect than that of EZS. The EZP inhibited carbohydrate hydrolysis (α-glucosidase and α-amylase) more efficiently than EZS in anti-diabetic tests. However, EZS showed a more efficient inhibition of advanced glycation end-products formation than EZP. In addition, both EZP and EZS effectively protected human-derived neuronal cells from high glucose-induced cytotoxicity. Finally, the physiological compounds were analyzed using UPLC IMS-QTOF/MSE, and the main EZP (quercetin-3-O-glucoside and 3-caffeoylquinic acid) and EZS (5-caffeoylquinic acid) compounds were identified as phenolic compounds.

Genomic Organization and Promoter Characterization of the Murine Glial Cell-derived Neurotrophic Factor Inducible Transcription Factor (mGIF) Gene (생쥐 신경교세포 유래 신경영양인자 유도성 전사인자 (mGIF) 유전자의 유전체 구조 및 프로모터 특성 분석)

  • Kim, Ok-Soo;Kim, Yong-Man;Kim, Nam-Young;Lee, Eo-Jin;Jang, Min-Kyung;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.167-173
    • /
    • 2007
  • To study the transcriptional mechanisms by which expression of the murine glial cell-derived neurotrophic factor inducible transcription factor (mGIF) gene is regulated, a murine genomic clone was iso-lated using a mGIF cDNA as probe. A 13-kb genomic fragment, which comprises 4-kb upstream of the transcription initiation site was sequenced. The promoter region lacks a TATA box and CAAT box, is rich in G+C content, and has multiple putative binding sites for the transcription factor Spl. The mGIF gene also has consensus sequences for AP2 binding sites. The transcriptional activity of five deletion mutants of a 2.1-kb fragment was analyzed by modulating transcription of the heterologous luciferase gene in the promoterless plasmid pGL2-Basic. All mutants showed significant transcriptional activity in the murine neuroblastoma cell line NB41A3. Transient expression assays suggested the presence of a positive regulator between -213 and -129 while a negative regulator was found in the region between -806 and -214. Relatively strong transcriptional activity was observed in neuronal NB41A3, glial C6 cells and hepatic HepG2, but very weak activity in skeletal muscle C2C12 cells. These findings confirm the tissue-specific activity of the mGIF promoter and suggest that this gene shares structural and functional similarities with the dopamine receptor genes that it regulates.

Evaluation of Metabolic Abnormality in Brain Tumors by In Viuo $^1$H MR Spectroscopy at 3 Tesla (3T 양성자 자기공명분광에 의한 뇌종양의 대사물질 이상소견)

  • Choe, Bo-Young;Jeun, Sin-Soo;Kim, Bum-Soo;Lee, Jae-Mun;Chung, Sung-Taek;Ahn, Chang-Beom;Oh, Chang-Hyun;Kim, Sun I.;Lee, Hyoung-Koo
    • Progress in Medical Physics
    • /
    • v.13 no.3
    • /
    • pp.120-128
    • /
    • 2002
  • To investigate differences between the metabolic ratios of normal controls and brain tumors such as astrocytomas and glioblastoma multiforme (GM) by proton MR spectroscopy (MRS) at 37 high field system. Using 3T MRI/MRS system, localized water-suppressed single-voxel technique in patients with brain tumors was employed to evaluate spectra with peaks of N-acetyl aspartate (NAA), choline-containing compounds (Cho), creatine/phosphocreatine (Cr) and lactate. On the basis of Cr, these peak areas were quantificated as a relative ratio. The variation of metabolites measurements of the designated region in 10 normal volunteers was less than 10%. Normal ranges of NAA/Cr and Cho/Cr ratios were 1.67$\pm$018 and 1.16$\pm$0.15, respectively. NAA/Cr ratio of all tumor tissues was significantly lower than that of the normal tissues (P=0.005). Cho/Cr ratio of glioblastoma multiforme was significantly higher than that of astrocytomas (P=0.001). Lactate was observed in all tumor cases. The present study demonstrated that the neuronal degradation or loss was observed in all tumor tissues. Higher grade of brain tumors was correlated with higher Cho/Cr ratio, indicating a significant dependence of Cho levels on malignancy of gliomas. This results suggest that clinical proton MR spectroscopy could be useful to predict tumor malignancy.

  • PDF

Significance of brain magnetic resonance imaging(MRI) in the assessment of occupational manganese exposure (직업적 망간 폭로에 있어서 뇌자기공명영상의 의의)

  • 정해관
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.14-30
    • /
    • 1998
  • Manganese is an essential element in the body. It is mainly deposited in the liver and to a lesser degree in the basal ganglia of the brain and eliminated through the bile duct. Rapid turnover of managanese in the body makes it difficult to evaluate the manganese exposure in workers, esecially in those with irregular or intermittent exposure, like welders. Therefore, conventional biomarkers, including blood and urine manganese can provide only a limited information about the long-tern or cumulative exposure to manganese. Introduction of magnetic resonance imaging (MRI) made a progress in the assessment of manganese exposure in the medical conditions related to manganese accumulation, e. g. hepatic failure and long-term total parenteral nutrition. Manganese shortens spin-lattice(T1) relaxation time on MRI due to its paramagnetic property, resulting in high signal intensity (HSI) on T1-weighted image(T1W1) of MRI. Manganese deposition in the brain, therefore, can be visualizedas an HSI in the globus pallidus, the substantia nigra, the putamen and the pituitary. clinical and epidemiologic studies regarding the MRI findings in the cases of occupational and non-occupational manganese exposure were reviewed. relationships between HSI on T1W1 of MRI and age, gender, occupational manganese exposure, and neurological dysfunction were analysed. Relationships betwen biological exposure indices and HSI on MRE werealso reviewed. Literatures were reviewed to establish the relationships between HSI, Manganese deposition in the brain, pathologic findings, and neurological dysfunction. HSI on T1W1 of MRI reflects regional manganese deposition in the brain. This relationship enables an estimation of regional manganese deposition in the brain by analysing MR signal intensity. Manganese deposition in the brain can induce a neuronal loss in the basal ganglia but functional abnormality is supposed to be related to the cumulative exposure of manganese in the brain, use of brain MRI for the assessment of exposure in a group of workers seems to be hardly rationalized, while ti can be a useful adjunct for the evaluation of manganese exposure int he cases with suspected manganese-related health problems.

  • PDF