• 제목/요약/키워드: neuron network

검색결과 293건 처리시간 0.025초

Design of a Neural Chip for Classifying Iris Flowers based on CMOS Analog Neurons

  • Choi, Yoon-Jin;Lee, Eun-Min;Jeong, Hang-Geun
    • 센서학회지
    • /
    • 제28권5호
    • /
    • pp.284-288
    • /
    • 2019
  • A calibration-free analog neuron circuit is proposed as a viable alternative to the power hungry digital neuron in implementing a deep neural network. The conventional analog neuron requires calibrations because a voltage-mode link is used between the soma and the synapse, which results in significant uncertainty in terms of current mapping. In this work, a current-mode link is used to establish a robust link between the soma and the synapse against the variations in the process and interconnection impedances. The increased hardware owing to the adoption of the current-mode link is estimated to be manageable because the number of neurons in each layer of the neural network is typically bounded. To demonstrate the utility of the proposed analog neuron, a simple neural network with $4{\times}7{\times}3$ architecture has been designed for classifying iris flowers. The chip is now under fabrication in 0.35 mm CMOS technology. Thus, the proposed true current-mode analog neuron can be a practical option in realizing power-efficient neural networks for edge computing.

Charted Depth Interpolation: Neuron Network Approaches

  • Shi, Chaojian
    • 한국항해항만학회지
    • /
    • 제28권7호
    • /
    • pp.629-634
    • /
    • 2004
  • Continuous depth data are often required in applications of both onboard systems and maritime simulation. But data available are usually discrete and irregularly distributed. Based on the neuron network technique, methods of interpolation to the charted depth are suggested in this paper. Two algorithms based on Levenberg-Marquardt back-propaganda and radial-basis function networks are investigated respectively. A dynamic neuron network system is developed which satisfies both real time and mass processing applications. Using hyperbolic paraboloid and typical chart area, effectiveness of the algorithms is tested and error analysis presented. Special process in practical applications such as partition of lager areas, normalization and selection of depth contour data are also illustrated.

Charted Depth Interpolation: Neuron Network Approaches

  • Chaojian, Shi
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2004년도 Asia Navigation Conference
    • /
    • pp.37-44
    • /
    • 2004
  • Continuous depth data are often required in applications of both onboard systems and maritime simulation. But data available are usually discrete and irregularly distributed. Based on the neuron network technique, methods of interpolation to the charted depth are suggested in this paper. Two algorithms based on Levenberg-Marquardt back-propaganda and radial-basis function networks are investigated respectively. A dynamic neuron network system is developed which satisfies both real time and mass processing applications. Using hyperbolic paraboloid and typical chart area, effectiveness of the algorithms is tested and error analysis presented. Special process in practical applications such as partition of lager areas, normalization and selection of depth contour data are also illustrated.

  • PDF

Hopfield Network을 이용한 작업영역 분할 (Division of Working Area using Hopfield Network)

  • 차영엽;최범식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.160-160
    • /
    • 2000
  • An optimization approach is used to solve the division problem of working area, and a cost function is defined to represent the constraints on the solution, which is then mapped onto the Hopfield neural network for minimization. Each neuron in the network represents a possible combination among many components. Division is achieved by initializing each neuron that represents a possible combination and then allowing the network settle down into a stable state. The network uses the initialized inputs and the compatibility measures among components in order to divide working area.

  • PDF

도립 진자 시스템의 안정화를 위한 진화형 신경회로망 제어기 (Evolving Neural Network Controller for Stabilization of Inverted Pendulum System)

  • 심영진;이준탁
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권3호
    • /
    • pp.157-163
    • /
    • 2000
  • In this paper, an Evolving Neural Network Controller(ENNC) which its structure and its connection weights are optimized simultaneously by Real Variable Elitist Genetic Algoithm(RVEGA) was presented for stabilization of an Inverter Pendulum(IP) system with nonlinearity. This proposed ENNC was described by a simple genetic chromosome. And the deletion of neuron, the determinations of input or output neuron, the deleted neuron and the activation functions types are given according to the various flag types. Therefore, the connection weights, its structure and the neuron types in the given ENNC can be optimized by the proposed evolution strategy. Through the simulations, we showed that the finally acquired optimal ENNC was successfully applied to the stabilization control of an IP system.

  • PDF

고차 뉴런을 이용한 교사 학습기의 Kohonen Feature Map (Using Higher Order Neuron on the Supervised Learning Machine of Kohonen Feature Map)

  • 정종수;하기와라 마사후미
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권5호
    • /
    • pp.277-282
    • /
    • 2003
  • In this paper we propose Using Higher Order Neuron on the Supervised Learning Machine of the Kohonen Feature Map. The architecture of proposed model adopts the higher order neuron in the input layer of Kohonen Feature Map as a Supervised Learning Machine. It is able to estimate boundary on input pattern space because or the higher order neuron. However, it suffers from a problem that the number of neuron weight increases because of the higher order neuron in the input layer. In this time, we solved this problem by placing the second order neuron among the higher order neuron. The feature of the higher order neuron can be mapped similar inputs on the Kohonen Feature Map. It also is the network with topological mapping. We have simulated the proposed model in respect of the recognition rate by XOR problem, discrimination of 20 alphabet patterns, Mirror Symmetry problem, and numerical letters Pattern Problem.

A neuron computer model embedded Lukasiewicz' implication

  • Kobata, Kenji;Zhu, Hanxi;Aoyama, Tomoo;Yoshihara, Ikuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.449-449
    • /
    • 2000
  • Many researchers have studied architectures for non-Neumann's computers because of escaping its bottleneck. To avoid the bottleneck, a neuron-based computer has been developed. The computer has only neurons and their connections, which are constructed of the learning. But still it has information processing facilities, and at the same time, it is like as a simplified brain to make inference; it is called "neuron-computer". No instructions are considered in any neural network usually; however, to complete complex processing on restricted computing resources, the processing must be reduced to primitive actions. Therefore, we introduce the instructions to the neuron-computer, in which the most important function is implications. There is an implication represented by binary-operators, but general implications for multi-value or fuzzy logics can't be done. Therefore, we need to use Lukasiewicz' operator at least. We investigated a neuron-computer having instructions for general implications. If we use the computer, the effective inferences base on multi-value logic is executed rapidly in a small logical unit.

  • PDF

SYNCHRONIZATION OF UNIDIRECTIONAL RING STRUCTURED IDENTICAL FITZHUGH-NAGUMO NETWORK UNDER IONIC AND EXTERNAL ELECTRICAL STIMULATIONS

  • Ibrahim, Malik Muhammad;Jung, Il Hyo
    • East Asian mathematical journal
    • /
    • 제36권5호
    • /
    • pp.547-554
    • /
    • 2020
  • Synchronization of unidirectional identical FitzHugh-Nagumo systems coupled in a ring structure under ionic and external electrical stimulations is investigated. In this network, each neuron is only connected and transmit signals to its next neuron via synaptic strength called gapjunctions. Adaptive control theory and Lyapunov stability theory are used to propose a unique control scheme with necessary and sufficient conditions which guarantee the synchronization of the neuronal network. Finally, the effectiveness of the proposed scheme is shown through numerical simulations.

ONNX기반 스파이킹 심층 신경망 변환 도구 (Conversion Tools of Spiking Deep Neural Network based on ONNX)

  • 박상민;허준영
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권2호
    • /
    • pp.165-170
    • /
    • 2020
  • 스파이킹 신경망은 기존 신경망과 다른 메커니즘으로 동작한다. 기존 신경망은 신경망을 구성하는 뉴런으로 들어오는 입력 값에 대해 생물학적 메커니즘을 고려하지 않은 활성화 함수를 거쳐 다음 뉴런으로 출력 값을 전달한다. 뿐만 아니라 VGGNet, ResNet, SSD, YOLO와 같은 심층 구조를 사용한 좋은 성과들이 있었다. 반면 스파이킹 신경망은 기존 활성화함수 보다 실제 뉴런의 생물학적 메커니즘과 유사하게 동작하는 방식이지만 스파이킹 뉴런을 사용한 심층구조에 대한 연구는 기존 뉴런을 사용한 심층 신경망과 비교해 활발히 진행되지 않았다. 본 논문은 기존 뉴런으로 만들어진 심층 신경망 모델을 변환 툴에 로드하여 기존 뉴런을 스파이킹 뉴런으로 대체하여 스파이킹 심층 신경망으로 변환하는 방법에 대해 제안한다.

DESIGN OF CONTROLLER FOR NONLINEAR SYSTEM USING DYNAMIC NEURAL METWORKS

  • Park, Seong-Wook;Seo, Bo-Hyeok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.60-64
    • /
    • 1995
  • The conventional neural network models are a parody of biological neural structures, and have very slow learning. In order to emulate some dynamic functions, such as learning and adaption, and to better reflect the dynamics of biological neurons, M.M. Gupta and D.H. Rao have developed a 'dynamic neural model'(DNU). Proposed neural unit model is to introduce some dynamics to the neuron transfer function, such that the neuron activity depends on internal states. Integrating an dynamic elementry processor within the neuron allows the neuron to act dynamic response Numerical examples are presented for a model system. Those case studies showed that the proposed DNU is so useful in practical sense.

  • PDF