• 제목/요약/키워드: neurofuzzy networks (NFN)

검색결과 6건 처리시간 0.018초

진화론적 최적 뉴로퍼지 네트워크: 해석과 설계 (Genetically Optimized Neurofuzzy Networks: Analysis and Design)

  • 박병준;김현기;오성권
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권8호
    • /
    • pp.561-570
    • /
    • 2004
  • In this paper, new architectures and comprehensive design methodologies of Genetic Algorithms(GAs) based Genetically optimized Neurofuzzy Networks(GoNFN) are introduced, and a series of numeric experiments are carried out. The proposed GoNFN is based on the rule-based Neurofuzzy Networks(NFN) with the extended structure of the premise and the consequence parts of fuzzy rules being formed within the networks. The premise part of the fuzzy rules are designed by using space partitioning in terms of fuzzy sets defined in individual variables. In the consequence part of the fuzzy rules, three different forms of the regression polynomials such as constant, linear and quadratic are taken into consideration. The structure and parameters of the proposed GoNFN are optimized by GAs. GAs being a global optimization technique determines optimal parameters in a vast search space. But it cannot effectively avoid a large amount of time-consuming iteration because GAs finds optimal parameters by using a given space. To alleviate the problems, the dynamic search-based GAs is introduced to lead to rapidly optimal convergence over a limited region or a boundary condition. In a nutshell, the objective of this study is to develop a general design methodology o GAs-based GoNFN modeling, come up a logic-based structure of such model and propose a comprehensive evolutionary development environment in which the optimization of the model can be efficiently carried out both at the structural as well as parametric level for overall optimization by utilizing the separate or consecutive tuning technology. To evaluate the performance of the proposed GoNFN, the models are experimented with the use of several representative numerical examples.

The Design of Fuzzy Controller Based on Genetic Optimization and Neurofuzzy Networks

  • Oh, Sung-Kwun;Roh, Seok-Beom
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권4호
    • /
    • pp.653-665
    • /
    • 2010
  • In this study, we introduce a neurofuzzy approach to the design of fuzzy controllers. The development process exploits key technologies of Computational Intelligence (CI), namely, genetic algorithms (GA) and neurofuzzy networks. The crux of the design methodology deals with the selection and determination of optimal values of the scaling factors of fuzzy controllers, which are essential to the entire optimization process. First, the tuning of the scaling factors of the fuzzy controller is carried out. Next, we form a nonlinear mapping for the scaling factors, which are realized by GA-based neurofuzzy networks by using a fuzzy set or fuzzy relation. The proposed approach is applied to control nonlinear systems like the inverted pendulum. Results of comprehensive numerical studies are presented through a detailed comparative analysis.

A Hybrid Modeling Architecture; Self-organizing Neuro-fuzzy Networks

  • Park, Byoungjun;Sungkwun Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.102.1-102
    • /
    • 2002
  • In this paper, we propose Self-organizing neurofuzzy networks(SONFN) and discuss their comprehensive design methodology. The proposed SONFN is generated from the mutually combined structure of both neurofuzzy networks (NFN) and polynomial neural networks(PNN) for model identification of complex and nonlinear systems. NFN contributes to the formation of the premise part of the SONFN. The consequence part of the SONFN is designed using PNN. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. We discuss two kinds of SONFN architectures and propose a comprehensive learning algorithm. It is shown that this network...

  • PDF

Fuzzy Controller Design by Means of Genetic Optimization and NFN-Based Estimation Technique

  • Oh, Sung-Kwun;Park, Seok-Beom;Kim, Hyun-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권3호
    • /
    • pp.362-373
    • /
    • 2004
  • In this study, we introduce a noble neurogenetic approach to the design of the fuzzy controller. The design procedure dwells on the use of Computational Intelligence (CI), namely genetic algorithms and neurofuzzy networks (NFN). The crux of the design methodology is based on the selection and determination of optimal values of the scaling factors of the fuzzy controllers, which are essential to the entire optimization process. First, tuning of the scaling factors of the fuzzy controller is carried out, and then the development of a nonlinear mapping for the scaling factors is realized by using GA based NFN. The developed approach is applied to an inverted pendulum nonlinear system where we show the results of comprehensive numerical studies and carry out a detailed comparative analysis.

뉴로퍼지 다항식 네트워크의 하이브리드 구조 설계 (Design of Hybrid Architecture of Neurofuzzy Polynomial Networks)

  • 박병준;박호성;오성권;장성환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.424-427
    • /
    • 2001
  • In this study, we introduce a concept of neurofuzzy polynomial networks (NFPN), a hybrid modeling architecture combining neurofuzzy networks (NFN) and polynomial neural networks(PNN). NFN contributes to the formation of the premise part of the rule-based structure of the NFPN. The consequence part of the NFPN is designed using PNN. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. We introduce two kinds of NFPN architectures, namely the basic and the modified one. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process system and to obtain the better output performance with superb predictive ability.

  • PDF

고급 뉴로퍼지 다항식 네트워크의 해석과 설계 (The Analysis and Design of Advanced Neurofuzzy Polynomial Networks)

  • 박병준;오성권
    • 전자공학회논문지CI
    • /
    • 제39권3호
    • /
    • pp.18-31
    • /
    • 2002
  • 본 연구는 뉴로퍼지 네트워크와 다항식 뉴럴네트워크를 합성한 하이브리드 모델링 구조인 고급 뉴로퍼지 다항식 네트워크(Advanced neurofuzzy polynomial networks ; ANFPN)를 제안한다. 제안된 네트워크 구조는 높은 비선형 규칙 기반 모델로, CI(Computational Intelligence)의 기술, 즉 퍼지집합, 뉴럴네트워크, 유전자 알고리즘에 의해 설계되어진다. 뉴로퍼지 네트워크는 ANFPN 구조의 전반부를, 다항식 뉴럴네트워크는 후반부를 구성한다. ANFPN의 전반부에서, 뉴로퍼지 네트워크는 간략추론, 오류역전파 학습 규칙을 이용한다. 멤버쉽함수의 파라미터, 학습율, 모멘텀 계수는 유전자 최적화를 이용하여 조절된다. ANFPN의 후반부 구조로서 다항식 뉴럴네트워크는 학습을 통해 생성되는(전개되는) 유연한 네트워크 구조이다. 특히 다항식 뉴럴네트워크의 층과 노드 수는 고정되어 있지 않고 동적으로 생성된다. 본 연구에서는, 2가지 형태의 ANFPN 구조를 제안한다. 즉 기본 구조와 변형된 구조이다. 여기서 기본 구조와 변형된 구조는 다항식 뉴럴네트워크 구조의 각 층에서 입력변수의 수와 회귀다항식의 차수에 의존한다. 두 결합 구조의 특징 때문에 공정 시스템의 비선형적인 특성을 고려할 수 있고 보다 우수한 예측능력을 가진 좋은 출력선응을 얻을 수 있게 한다. ANFPN의 유용성과 실용성은 2개의 수치 예제를 통해 논의된다. 제안된 ANFPN은 기존의 모델보다 높은 정밀도와 예측능력을 가진 모델을 생성함을 보인다.