• 제목/요약/키워드: neuro-fuzzy techniques

검색결과 50건 처리시간 0.023초

퍼지집합이론 및 뉴로-퍼지기법을 이용한 RMR 값의 추론 (Inference of RMR Value Using Fuzzy Set Theory and Neuro-Fuzzy Techniques)

  • 배규진;조만섭
    • 터널과지하공간
    • /
    • 제11권4호
    • /
    • pp.289-300
    • /
    • 2001
  • 터널의 설계에는 지반조사 자료의 부정확성과 평가의 애매성 그리고 자료수집 과정의 오류(observer error)등이 내재되어 있다. 그러므로 터널의 안정성과 경제적인 시공을 위해서는 시공 중 막장면의 조사가 매우 중요한 역할을 한다. 본 연구는 막장면 조사 시 지반의 고유 특성을 보다 정확하게 평가하고, 조사자의 주관성을 최소화시키기 위하여 수행되었다. 이러한 목적을 위하여 막장관찰 자료로부터 RMR값을 추론하고자 인공지능기법 중 퍼지집합이론과 뉴로-퍼지기법을 적용하였고, 46개의 학습자료에 대해 원래의 RMR값과 퍼지이론 및 뉴로저지기법의 추론에 의한 RM $R_{_FU}$ 및 RM $R_{_NF}$값의 상관성을 분석하였다. 본 연구의 결과는 원래의 RMR값과 퍼지추론에 의한 RM $R_{_FU}$값 및 뉴로-퍼지기법에 의한 RM $R_{_NF}$값의 상관계수가 각각 |R|= 0.96과 |R|=0.95로 상관성이 우수한 것으로 조사되었다. 이 결과로부터 암반평가를 위한 퍼지집합이론 및 뉴로-피지기법의 적용성이 충분함을 검증할 수 있었다.할 수 있었다.

  • PDF

Design of intelligent control strategies using a magnetorheological damper for span structure

  • Hernandez, Angela;Marichal, Graciliano N.;Poncela, Alfonso V.;Padron, Isidro
    • Smart Structures and Systems
    • /
    • 제15권4호
    • /
    • pp.931-947
    • /
    • 2015
  • This paper focuses on the design of an intelligent control system. The used techniques are based on Neuro Fuzzy approaches applied to a magnetorheological damper in order to reduce the vibrations over footbridges; it has been applied to the Science Museum Footbridge of Valladolid, particularly. A model of the footbridge and of the damper has been built using different simulation tools, and a successful comparison with the real footbridge and the real damper has been carried out. This simulated model has allowed the reproduction of the behaviour of the footbridge and damper when a pedestrian walks across the footbridge. Once it is determined that the simulation results are similar to real data, the control system is introduced into the model. In this sense, different strategies based on Neuro Fuzzy systems have been studied. In fact, an ANFIS (Artificial Neuro Fuzzy Inference System) method has also been used, in addition to an alternative Neuro Fuzzy approach. Several trials have been carried out, using both techniques, obtaining satisfactory results after using these techniques.

Intelligent Approach for Android Malware Detection

  • Abdulla, Shubair;Altaher, Altyeb
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권8호
    • /
    • pp.2964-2983
    • /
    • 2015
  • As the Android operating system has become a key target for malware authors, Android protection has become a thriving research area. Beside the proved importance of system permissions for malware analysis, there is a lot of overlapping in permissions between malware apps and goodware apps. The exploitation of them effectively in malware detection is still an open issue. In this paper, to investigate the feasibility of neuro-fuzzy techniques to Android protection based on system permissions, we introduce a self-adaptive neuro-fuzzy inference system to classify the Android apps into malware and goodware. According to the framework introduced, the most significant permissions that characterize optimally malware apps are identified using Information Gain Ratio method and encapsulated into patterns of features. The patterns of features data is used to train and test the system using stratified cross-validation methodologies. The experiments conducted conclude that the proposed classifier can be effective in Android protection. The results also underline that the neuro-fuzzy techniques are feasible to employ in the field.

인공지능에 의한 MAP 네트워크의 성능관리기 개발 (Development of MAP Network Performance Manger Using Artificial Intelligence Techniques)

  • 손준우;이석
    • 한국정밀공학회지
    • /
    • 제14권4호
    • /
    • pp.46-55
    • /
    • 1997
  • This paper presents the development of intelligent performance management of computer communication networks for larger-scale integrated systems and the demonstration of its efficacy using computer simula- tion. The innermost core of the performance management is based on fuzzy set theory. This fuzzy perfor- mance manager has learning ability by using principles of neuro-fuzzy model, neuralnetwork, genetic algo- rithm(GA). Two types of performance managers are described in this paper. One is the Neuro-Fuzzy Per- formance Manager(NFPM) of which learning ability is based on the conventional gradient method, and the other is GA-based Neuro-Fuzzy Performance Manager(GNFPM)with its learning ability based on a genetic algorithm. These performance managers have been evaluated via discrete event simulation of a computer network.

  • PDF

도립진자 시스템의 뉴로-퍼지 제어에 관한 연구 (A Study on the Neuro-Fuzzy Control for an Inverted Pendulum System)

  • 소명옥;류길수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.11-19
    • /
    • 1996
  • Recently, fuzzy and neural network techniques have been successfully applied to control of complex and ill-defined system in a wide variety of areas, such as robot, water purification, automatic train operation system and automatic container crane operation system, etc. In this paper, we present a neuro-fuzzy controller which unifies both fuzzy logic and multi-layered feedforward neural networks. Fuzzy logic provides a means for converting linguistic control knowledge into control actions. On the other hand, feedforward neural networks provide salient features, such as learning and parallelism. In the proposed neuro-fuzzy controller, the parameters of membership functions in the antecedent part of fuzzy inference rules are identified by using the error backpropagation algorithm as a learning rule, while the coefficients of the linear combination of input variables in the consequent part are determined by using the least square estimation method. Finally, the effectiveness of the proposed controller is verified through computer simulation of an inverted pendulum system.

  • PDF

Development of an Adaptive Neuro-Fuzzy Techniques based PD-Model for the Insulation Condition Monitoring and Diagnosis

  • Kim, Y.J.;Lim, J.S.;Park, D.H.;Cho, K.B.
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제11권11호
    • /
    • pp.1-8
    • /
    • 1998
  • This paper presents an arificial neuro-fuzzy technique based prtial discharge (PD) pattern classifier to power system application. This may require a complicated analysis method employ -ing an experts system due to very complex progressing discharge form under exter-nal stress. After referring briefly to the developments of artificical neural network based PD measurements, the paper outlines how the introduction of new emerging technology has resulted in the design of a number of PD diagnostic systems for practical applicaton of residual lifetime prediction. The appropriate PD data base structure and selection of learning data size of PD pattern based on fractal dimentsional and 3-D PD-normalization, extraction of relevant characteristic fea-ture of PD recognition are discussed. Some practical aspects encountered with unknown stress in the neuro-fuzzy techniques based real time PD recognition are also addressed.

  • PDF

EM 알고리즘에 의한 퍼지 규칙생성과 온도 제어 시스템의 설계 (A Fuzzy Rule Extraction by EM Algorithm and A Design of Temperature Control System)

  • 오범진;곽근창;유정웅
    • 조명전기설비학회논문지
    • /
    • 제16권5호
    • /
    • pp.104-111
    • /
    • 2002
  • 본 논문에서는 EM(Expectation-Maximization) 알고리즘을 이용한 자동적인 퍼지 규칙생성과 적응 뉴로-퍼지 제어기(Adaptive Neuro-Fuzzy Controller)의 설계를 제안한다. EM 알고리즘은 가우시안 혼합모델(Gaussian Mixture Model)의 최대우도추정(Maximum Likelihood Estimate)을 위해 사용되어지며 본 논문에서는 규칙생성을 위해 클러스터 중심을 추정한다. 추정된 클러스터는 ANFIS(Adaptive Neuro-Fuzzy Inference System)의 퍼지 규칙과 소속함수를 구축하는데 사용되어진다. 시뮬레이션으로 제안된 적응 뉴로-퍼지 제어기의 성능을 입증하기 위해 목욕물 온도 제어 시스템에 대해 다루고 기존 퍼지 제어기에 비해 적은 규칙의 수와 작은 값의 SAE(Sum of Absolute Error)으로 성능개선을 확인하였다.

Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural Networks (ANNs) for structural damage identification

  • Hakim, S.J.S.;Razak, H. Abdul
    • Structural Engineering and Mechanics
    • /
    • 제45권6호
    • /
    • pp.779-802
    • /
    • 2013
  • In this paper, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (ANNs) techniques are developed and applied to identify damage in a model steel girder bridge using dynamic parameters. The required data in the form of natural frequencies are obtained from experimental modal analysis. A comparative study is made using the ANNs and ANFIS techniques and results showed that both ANFIS and ANN present good predictions. However the proposed ANFIS architecture using hybrid learning algorithm was found to perform better than the multilayer feedforward ANN which learns using the backpropagation algorithm. This paper also highlights the concept of ANNs and ANFIS followed by the detail presentation of the experimental modal analysis for natural frequencies extraction.

A Comparison of Different Intelligent Control Techniques For a PM dc Motor

  • Amer S. I.;Salem M. M.
    • Journal of Power Electronics
    • /
    • 제5권1호
    • /
    • pp.1-10
    • /
    • 2005
  • This paper presents the application of a simple neuro-based speed control scheme of a permanent magnet (PM) dc motor. To validate its efficiency, the performance characteristics of the proposed simple neuro-based scheme are compared with those of a Neural Network controller and those of a Fuzzy Logic controller under different operating conditions. The comparative results show that the simple neuro-based speed control scheme is robust, accurate and insensitive to load disturbances.

Neuro-Fuzzy 기법을 이용한 부분방전 패턴인식에 대한 연구 (A Study on Partial Discharge Pattern Recognition Using Neuro-Fuzzy Techniques)

  • 박건준;김길성;오성권;최원;김정태
    • 전기학회논문지
    • /
    • 제57권12호
    • /
    • pp.2313-2321
    • /
    • 2008
  • In order to develop reliable on-site partial discharge(PD) pattern recognition algorithm, the fuzzy neural network based on fuzzy set(FNN) and the polynomial network pattern classifier based on fuzzy Inference(PNC) were investigated and designed. Using PD data measured from laboratory defect models, these algorithms were learned and tested. Considering on-site situation where it is not easy to obtain voltage phases in PRPDA(Phase Resolved Partial Discharge Analysis), the measured PD data were artificially changed with shifted voltage phases for the test of the proposed algorithms. As input vectors of the algorithms, PRPD data themselves were adopted instead of using statistical parameters such as skewness and kurtotis, to improve uncertainty of statistical parameters, even though the number of input vectors were considerably increased. Also, results of the proposed neuro-fuzzy algorithms were compared with that of conventional BP-NN(Back Propagation Neural Networks) algorithm using the same data. The FNN and PNC algorithms proposed in this study were appeared to have better performance than BP-NN algorithm.