• Title/Summary/Keyword: neuro-fuzzy inference system

Search Result 208, Processing Time 0.026 seconds

On the prediction of unconfined compressive strength of silty soil stabilized with bottom ash, jute and steel fibers via artificial intelligence

  • Gullu, Hamza;Fedakar, Halil ibrahim
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.441-464
    • /
    • 2017
  • The determination of the mixture parameters of stabilization has become a great concern in geotechnical applications. This paper presents an effort about the application of artificial intelligence (AI) techniques including radial basis neural network (RBNN), multi-layer perceptrons (MLP), generalized regression neural network (GRNN) and adaptive neuro-fuzzy inference system (ANFIS) in order to predict the unconfined compressive strength (UCS) of silty soil stabilized with bottom ash (BA), jute fiber (JF) and steel fiber (SF) under different freeze-thaw cycles (FTC). The dosages of the stabilizers and number of freeze-thaw cycles were employed as input (predictor) variables and the UCS values as output variable. For understanding the dominant parameter of the predictor variables on the UCS of stabilized soil, a sensitivity analysis has also been performed. The performance measures of root mean square error (RMSE), mean absolute error (MAE) and determination coefficient ($R^2$) were used for the evaluations of the prediction accuracy and applicability of the employed models. The results indicate that the predictions due to all AI techniques employed are significantly correlated with the measured UCS ($p{\leq}0.05$). They also perform better predictions than nonlinear regression (NLR) in terms of the performance measures. It is found from the model performances that RBNN approach within AI techniques yields the highest satisfactory results (RMSE = 55.4 kPa, MAE = 45.1 kPa, and $R^2=0.988$). The sensitivity analysis demonstrates that the JF inclusion within the input predictors is the most effective parameter on the UCS responses, followed by FTC.

Evaluation of the parameters affecting the Schmidt rebound hammer reading using ANFIS method

  • Toghroli, Ali;Darvishmoghaddam, Ehsan;Zandi, Yousef;Parvan, Mahdi;Safa, Maryam;Abdullahi, Muazu Mohammed;Heydari, Abbas;Wakil, Karzan;Gebreel, Saad A.M.;Khorami, Majid
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.525-530
    • /
    • 2018
  • As a nondestructive testing method, the Schmidt rebound hammer is widely used for structural health monitoring. During application, a Schmidt hammer hits the surface of a concrete mass. According to the principle of rebound, concrete strength depends on the hardness of the concrete energy surface. Study aims to identify the main variables affecting the results of Schmidt rebound hammer reading and consequently the results of structural health monitoring of concrete structures using adaptive neuro-fuzzy inference system (ANFIS). The ANFIS process for variable selection was applied for this purpose. This procedure comprises some methods that determine a subsection of the entire set of detailed factors, which present analytical capability. ANFIS was applied to complete a flexible search. Afterward, this method was applied to conclude how the five main factors (namely, age, silica fume, fine aggregate, coarse aggregate, and water) used in designing concrete mixture influence the Schmidt rebound hammer reading and consequently the structural health monitoring accuracy. Results show that water is considered the most significant parameter of the Schmidt rebound hammer reading. The details of this study are discussed thoroughly.

Development of Water Demand Forecasting Simulator and Performance Evaluation (단기 물 수요예측 시뮬레이터 개발과 예측 알고리즘 성능평가)

  • Shin, Gang-Wook;Kim, Ju-Hwan;Yang, Jae-Rheen;Hong, Sung-Taek
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.581-589
    • /
    • 2011
  • Generally, treated water or raw water is transported into storage reservoirs which are receiving facilities of local governments from multi-regional water supply systems. A water supply control and operation center is operated not only to manage the water facilities more economically and efficiently but also to mitigate the shortage of water resources due to the increase in water consumption. To achieve the goal, important information such as the flow-rate in the systems, water levels of storage reservoirs or tanks, and pump-operation schedule should be considered based on the resonable water demand forecasting. However, it is difficult to acquire the pattern of water demand used in local government, since the operating information is not shared between multi-regional and local water systems. The pattern of water demand is irregular and unpredictable. Also, additional changes such as an abrupt accident and frequent changes of electric power rates could occur. Consequently, it is not easy to forecast accurate water demands. Therefore, it is necessary to introduce a short-term water demands forecasting and to develop an application of the forecasting models. In this study, the forecasting simulator for water demand is developed based on mathematical and neural network methods as linear and non-linear models to implement the optimal water demands forecasting. It is shown that MLP(Multi-Layered Perceptron) and ANFIS(Adaptive Neuro-Fuzzy Inference System) can be applied to obtain better forecasting results in multi-regional water supply systems with a large scale and local water supply systems with small or medium scale than conventional methods, respectively.

Development and evaluation of ANFIS-based method for hydrological drought outlook method (수문학적 가뭄전망을 위한 ANFIS 활용 기법 개발 및 평가)

  • Moon, Geon Ho;Kim, Seon Ho;Bae, Deg Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.123-123
    • /
    • 2018
  • 가뭄은 홍수와 달리 진행속도가 비교적 느리기 때문에 초기에 감지한다면 피해를 최소화 할 수 있다. 국내에서는 가뭄전망을 위해 물리적 기반의 기상-수문연계해석 시스템을 구축하여 월 내지 계절전망을 수행하고 있다. 물리적 기반의 가뭄전망은 수치예보모델의 불확실성을 가지고 있으므로 예보 정확도 개선의 측면에서는 통계적 모델을 같이 활용하는 것이 바람직하다. 최근 국외에서는 통계적 방법인 AI (Artificial Intelligence) 기술을 사용하여 가뭄을 전망하는 연구가 활발히 진행 중이나, 아직까지 국내에서는 관련연구가 미흡한 실정이다. 이에 본 연구에서는 ANFIS (Adaptive Neuro-Fuzzy Inference System) 기반의 댐 유입량 예측 모델을 구축하고 SRI (Standardized Runoff Index)를 활용하여 수문학적 가뭄전망을 수행하였다. 대상유역은 국내 주요 다목적댐이 위치한 충주댐 유역과 소양강댐 유역을 선정하였다. 수문 및 기상자료는 국토 교통부 및 기상청의 관측 댐 유입량, 관측 강수량, 관측 기온 및 장기기상예보 자료를 사용하였다. ANFIS 모델 구축을 위한 훈련 및 보정기간과 검정기간은 각각 1987~2010년과 2011~2016년을 선정하였다. 수문학적 가뭄전망은 지속기간 3개월의 1개월 전망 SRI3를 활용하였으며, SRI3는 관측유입량과 예측유입량을 결합하여 산정하였다. 댐 예측유입량 및 수문학적 가뭄전망의 정확도 평가를 위해 상관계수, 평균제곱근오차를 활용하였다. 댐 예측유입량 평가 결과 예측값과 관측값의 상관계수가 높게 나타났으며, 평균제곱근오차는 낮아 예측성이 뛰어났다. SRI3의 경우 관측값과 예측값의 가뭄발생시기가 유사하여 가뭄을 적절하게 반영하는 것으로 나타났다. 본 연구의 결과는 통계적 기반의 수문학적 가뭄전망기법을 개발하였다는 측면에서 의의가 있으며, 향후 물리적 기반의 가뭄전망정보와 결합한다면 보다 실효성이 향상될 것으로 기대된다.

  • PDF

Metaheuristic models for the prediction of bearing capacity of pile foundation

  • Kumar, Manish;Biswas, Rahul;Kumar, Divesh Ranjan;T., Pradeep;Samui, Pijush
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.129-147
    • /
    • 2022
  • The properties of soil are naturally highly variable and thus, to ensure proper safety and reliability, we need to test a large number of samples across the length and depth. In pile foundations, conducting field tests are highly expensive and the traditional empirical relations too have been proven to be poor in performance. The study proposes a state-of-art Particle Swarm Optimization (PSO) hybridized Artificial Neural Network (ANN), Extreme Learning Machine (ELM) and Adaptive Neuro Fuzzy Inference System (ANFIS); and comparative analysis of metaheuristic models (ANN-PSO, ELM-PSO, ANFIS-PSO) for prediction of bearing capacity of pile foundation trained and tested on dataset of nearly 300 dynamic pile tests from the literature. A novel ensemble model of three hybrid models is constructed to combine and enhance the predictions of the individual models effectively. The authenticity of the dataset is confirmed using descriptive statistics, correlation matrix and sensitivity analysis. Ram weight and diameter of pile are found to be most influential input parameter. The comparative analysis reveals that ANFIS-PSO is the best performing model in testing phase (R2 = 0.85, RMSE = 0.01) while ELM-PSO performs best in training phase (R2 = 0.88, RMSE = 0.08); while the ensemble provided overall best performance based on the rank score. The performance of ANN-PSO is least satisfactory compared to the other two models. The findings were confirmed using Taylor diagram, error matrix and uncertainty analysis. Based on the results ELM-PSO and ANFIS-PSO is proposed to be used for the prediction of bearing capacity of piles and ensemble learning method of joining the outputs of individual models should be encouraged. The study possesses the potential to assist geotechnical engineers in the design phase of civil engineering projects.

Failure Restoration of Mobility Databases by Learning and Prediction of User Mobility in Mobile Communication System (이동 통신 시스템에서 사용자 이동성의 학습과 예측에 의한 이동성 데이타베이스의 실채 회복)

  • Gil, Joon-Min;Hwang, Chong-Sun;Jeong, Young-Sik
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.4
    • /
    • pp.412-427
    • /
    • 2002
  • This paper proposes a restoration scheme based on mobility learning and prediction in the presence of the failure of mobility databases in mobile communication systems. In mobile communication systems, mobility databases must maintain the current location information of users to provide a fast connection for them. However, the failure of mobility databases may cause some location information to be lost. As a result, without an explicit restoration procedure, incoming calls to users may be rejected. Therefore, an explicit restoration scheme against the failure of mobility databases is needed to guarantee continuous service availability to users. Introducing mobility learning and prediction into the restoration process allows systems to locate users after a failure of mobility databases. In failure-free operations, the movement patterns of users are learned by a Neuro-Fuzzy Inference System (NFIS). After a failure, an inference process of the NFIS is initiated and the users' future location is predicted. This is used to locate lost users after a failure. This proposal differs from previous approaches using checkpoint because it does not need a backup process nor additional storage space to store checkpoint information. In addition, simulations show that our proposal can reduce the cost needed to restore the location records of lost users after a failure when compared to the checkpointing scheme

Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns

  • Liu, Chanjuan;Wu, Xinling;Wakil, Karzan;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.743-767
    • /
    • 2020
  • Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.

A Development of Realtime Urban Flood Forecasting Service (도시하천의 실시간 홍수예측서비스 개발)

  • Kim, Hyung-Woo;Lee, Jong-Kook;Ha, Sang-Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.532-536
    • /
    • 2007
  • 급속한 도시화 및 지구온난화로 인한 집중호우로 홍수피해가 해마다 증가하고 있다. 홍수피해를 최소화하기 위하여 4대강 중심의 홍수예경보시스템이 구축되는 등 다양한 제도적 장치가 마련되고 있으나 중소하천이 분포되어 있는 도시유역에서의 홍수예측기능은 부족한 실정이다. 본 연구에서는 중소 도시하천에 적용 가능한 실시간 도시홍수예측서비스 시스템(Realtime Urban Flood Forecasting Service, U-FFS)을 개발하였다. 경기도 성남에 위치한 탄천을 대상유역으로 선정하고 실시간 강우 및 수위관측소를 설치하여 수문데이타를 수집하였으며 이를 바탕으로 수위예측모형을 구축하였다. 모형구축에는 이미 국내외 학계에서 그 정확도가 입증된 바 있는 Data-driven 모델의 일종인 ANFIS(Adaptive Neuro-Fuzzy Inference System)를 이용하였다. 개발된 수위예측모형은 지정된 시간에 자동으로 작동 가능한 실행파일로 프로그래밍되어 최종적으로 홍수예측 웹서비스와 연동된다. U-FFS는 집중호우 발생 시 최종 유출구의 30분, 1시간, 2시간 후의 수위 예측값을 웹 상을 통해 제공함으로써 언제 어디서나 홍수예측 정보를 누구나 손쉽게 획득할 수 있는 장점이 있다. 시범운영 결과, 30분 및 1시간 후의 수위 예측은 정확도가 매우 뛰어났으며 2시간 후의 수위 예측의 정확성은 다소 떨어지는 것으로 확인되었으나 전반적인 홍수예측 판단에는 무리가 없을 것으로 예상된다. 본 시스템의 홍수예측모형은 생성 및 수정이 간편하여 그 활용성이 매우 높을 것으로 기대된다. 특히 안전함을 지향하는 각종 U-City나 홍수피해가 빈번한 도시유역에 적용하면 기존 시스템과 차별화된 실시간 홍수예측 서비스가 가능해져 홍수피해를 최소화할 수 있을 것이다. 취수구 직경 D의 3.3배를 벗어나지 않는다는 결과를 도출할 수 있었다.링 목적으로 사용될 수 있다. 본 연구에서 개발한 영상수위계는 한강홍수통제소 관할의 전류, 청담대교 등 4개소 낙동강 홍수통제소 2개소, 지자체 등에 적용되었으며, 적용 결과 비교적 안정적이면서 정확하게 수위를 측정하는 것으로 나타났다. 한편 기존 CCD 카메라 이외에 CCTV를 이용한 영상수위계를 개발하여 영상의 화질 개선뿐 아니라 하천화상 감시 기능을 강화하였다.소류의 섭취율은 높았다. 집단간의 상관도를 보면 교육별로 김치, 장아찌, 콩이 각각 p>0.5 수준에서 유의한 차가 없었고, 나머지는 유의한 차가 있었다. 연령별로는 멸치가 유의한 차가 없었고(p>0.5), 수입별로는 콩이 유의한 차가 없었다(p>0.5). 4. 영양지식(營養知識) 검토 가정생활(家庭生活)에 필요(必要)한 일반적(一般的)인 영양지식(營養知識)은 대체적으로 낮은 편이었다. 어린이 영양, 편식의 해로움, 비만증의 해로움, 임신부 그리고 수유부 영양에 대하여는 일반적으로 알고 있다고 하였으며, 그다음으로 이유기 영양, 어린이 발육에 필요한 식품, 식품과 영양소와의 관계, 우유의 성분, 노인영양에 대하여 잘 알고 있는 비율이 낮았으며, 인체의 영양소, 식단작성여부, 간식의 이론, 식품감별법에 대하여는 가장 낮은 비율을 나타냈다. 각 영양지식은 교육정도가 높을수록 영양지식이 높았고, 교육별 집단간의 유의한 차가 나타났다. (0.001

  • PDF