• 제목/요약/키워드: neuro-fuzzy control

검색결과 202건 처리시간 0.033초

Neuro-Fuzzy Control of Inverted Pendulum System for Intelligent Control Education

  • Lee, Geun-Hyung;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권4호
    • /
    • pp.309-314
    • /
    • 2009
  • This paper presents implementation of the adaptive neuro-fuzzy control method. Control performance of the adaptive neuro-fuzzy control method for a popular inverted pendulum system is evaluated. The inverted pendulum system is designed and built as an education kit for educational purpose for engineering students. The educational kit is specially used for intelligent control education. Control purpose is to satisfy balancing angle and desired trajectory tracking performance. The adaptive neuro-fuzzy controller has the Takagi-Sugeno(T-S) fuzzy structure. Back-propagation algorithm is used for updating weights in the fuzzy control. Control performances of the inverted pendulum system by PID control method and the adaptive neuro-fuzzy control method are compared. Control hardware of a DSP 2812 board is used to achieve the real-time control performance. Experimental studies are conducted to show successful control performances of the inverted pendulum system by the adaptive neuro-fuzzy control method.

저온저장고의 뉴로-퍼지 제어시스템 개발 (Development of Neuro-Fuzzy System for Cold Storage Facility)

  • 양길모;고학균;홍지향
    • Journal of Biosystems Engineering
    • /
    • 제28권2호
    • /
    • pp.117-126
    • /
    • 2003
  • This study was conducted to develop precision control system fur cold storage facility that could offer safe storage environment for green grocery. For that reason of neuro-fuzzy control system with learning ability algorithm and single chip neuro-fuzzy micro controller was developed for cold storage facility. Dynamic characteristics and hunting of neuro-fuzzy control system were far superior to on-off and fuzzy control system. Dynamic characteristics of temperature were faster than on-off control system by 1,555 seconds(123% faster) and fuzzy control system by 460 seconds(36.4% faster). When system was arrived at steady state. hunting was ${\pm}$0.5$^{\circ}C$ in on-off control system, ${\pm}$0.4$^{\circ}C$ in fuzzy control system, and ${\pm}$0.3$^{\circ}C$ in neuro-fuzzy control system. Hunting of humidity and wind velocity was also controlled precisely by 70 to 72.5% and 1m/s For storage experiment with onion, characteristics of neuro-fuzzy control system were tested. Dynamic characteristics of neuro-fuzzy control system made cold storage facility conducted precooling ability and minimized hunting.

헬리콥터 자세제어를 위한 뉴로 퍼지 제어기의 설계에 관한 연구 (A Study on Design of Neuro- Fuzzy Controller for Attitude Control of Helicopter)

  • 최용선;임태우;장경원;안태천
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2283-2285
    • /
    • 2001
  • This paper proposed to a neural network based fuzzy control (neuro-fuzzy control) technique for attitude control of helicopter with strongly dynamic nonlinearities and derived a helicopter aerodynamic torque equation of helicopter and the force balance equation. A neuro-fuzzy system is a feedforward network that employs a back-propagation algorithm for learning purpose. A neuro-fuzzy system is used to identify nonlinear dynamic systems. Hence, this paper presents methods for the design of a neural network(NN) based fuzzy controller(that is, neuro-fuzzy control) for a helicopter of nonlinear MIMO systems. The proposed neuro-fuzzy control determined to a input-output membership function in fuzzy control and neural networks constructed to improve through learning of input-output membership functions determined in fuzzy control.

  • PDF

유도전동기의 강인 제어를 위한 뉴로-퍼지 설계 (Design of neuro-fuzzy for robust control of induction motor)

  • 송윤재;강두영;김형권;안태천
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.454-457
    • /
    • 2004
  • In this paper, control method proposed for effective speed control of the induction motor indirect vector control. For the induction motor drive, indirect vector control scheme that controls torque current and flux current of the stator current independently so that it can have improved dynamics. Also, neuro-fuzzy algorithm employed for torque current control in order to optimal speed control The proposed neuro-fuzzy algorithm can be applied to the precise speed control of an induction motor drive system or the field of any other power systems.

  • PDF

Neuro-Fuzzy Algorithm for Nuclear Reactor Power Control : Part I

  • Chio, Jung-In;Hah, Yung-Joon
    • 한국지능시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.52-63
    • /
    • 1995
  • A neuro-fuzzy algorithm is presented for nuclear reactor power control in a pressurized water reactor. Automatic reacotr power control is complicated by the use of control rods because of highly nonlinear dynamics in the axial power shape. Thus, manual shaped controls are usually employed even for the limited capability during the power maneuvers. In an attempt to achieve automatic shape control, a neuro-fuzzy approach is considered because fuzzy algorithms are good at various aspects of operator's knowledge representation while neural networks are efficinet structures capable of learning from experience and adaptation to a changing nuclear core state. In the proposed neuro-fuzzy control scheme, the rule base is formulated based ona multi-input multi-output system and the dynamic back-propagation is used for learning. The neuro-fuzzy powere control algorithm has been tested using simulation fesponses of a Korean standard pressurized water reactor. The results illustrate that the proposed control algorithm would be a parctical strategy for automatic nuclear reactor power control.

  • PDF

Neuro-Fuzzy Systems: Theory and Applications

  • Lee, C.S. George
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.29.1-29
    • /
    • 2001
  • Neuro-fuzzy systems are multi-layered connectionist networks that realize the elements and functions of traditional fuzzy logic control/decision systems. A trained neuro-fuzzy system is isomorphic to a fuzzy logic system, and fuzzy IF-THEN rule knowledge can be explicitly extracted from the network. This talk presents a brief introduction to self-adaptive neuro-fuzzy systems and addresses some recent research results and applications. Most of the existing neuro-fuzzy systems exhibit several major drawbacks that lead to performance degradation. These drawbacks are the curse of dimensionality (i.e., fuzzy rule explosion), inability to re-structure their internal nodes in a changing environment, and their lack of ability to extract knowledge from a given set of training data. This talk focuses on our investigation of network architectures, self-adaptation algorithms, and efficient learning algorithms that will enable existing neuro-fuzzy systems to self-adapt themselves in an unstructured and uncertain environment.

  • PDF

도립진자 시스템의 뉴로-퍼지 제어에 관한 연구 (A Study on the Neuro-Fuzzy Control for an Inverted Pendulum System)

  • 소명옥;류길수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.11-19
    • /
    • 1996
  • Recently, fuzzy and neural network techniques have been successfully applied to control of complex and ill-defined system in a wide variety of areas, such as robot, water purification, automatic train operation system and automatic container crane operation system, etc. In this paper, we present a neuro-fuzzy controller which unifies both fuzzy logic and multi-layered feedforward neural networks. Fuzzy logic provides a means for converting linguistic control knowledge into control actions. On the other hand, feedforward neural networks provide salient features, such as learning and parallelism. In the proposed neuro-fuzzy controller, the parameters of membership functions in the antecedent part of fuzzy inference rules are identified by using the error backpropagation algorithm as a learning rule, while the coefficients of the linear combination of input variables in the consequent part are determined by using the least square estimation method. Finally, the effectiveness of the proposed controller is verified through computer simulation of an inverted pendulum system.

  • PDF

뉴로-퍼지 제어기를 이용한 유압서보시스템의 추적제어 (A Tracking Control of the Hydraulic Servo System Using the Neuro-Fuzzy Controller)

  • 박근석;임준영;강이석
    • 제어로봇시스템학회논문지
    • /
    • 제7권6호
    • /
    • pp.509-517
    • /
    • 2001
  • To deal with non-linearities and time-varying characteristics of hydraulic systems, in this paper, the neuro-fuzzy controller has been introduced. This controller does not require and accurate mathematical model for the nonlinear factor. In order to solve general fuzzy inference problems, the input membership function and fuzzy reasoning rules are used for determining the controller parameters. These parameters are determined by using the learning algorithm. The control performance of the neuro-fuzzy controller is evaluated through a series of experiments for the various types of inputs while applying disturbances to the hydraulic system. The performance of this controller was compared with those of PID and PD controllers. From these results, We observe be said that the position tracking performance of neuro-fuzzy is better those of PID and PD controllers.

  • PDF

학습기반 뉴로-퍼지 시스템을 이용한 휴머노이드 로봇의 지능보행 모델링 (Intelligent Walking Modeling of Humanoid Robot Using Learning Based Neuro-Fuzzy System)

  • 박귀태;김동원
    • 제어로봇시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.358-364
    • /
    • 2007
  • Intelligent walking modeling of humanoid robot using learning based neuro-fuzzy system is presented in this paper. Walking pattern, trajectory of the zero moment point (ZMP) in a humanoid robot is used as an important criterion for the balance of the walking robots but its complex dynamics makes robot control difficult. In addition, it is difficult to generate stable and natural walking motion for a robot. To handle these difficulties and explain empirical laws of the humanoid robot, we are modeling practical humanoid robot using neuro-fuzzy system based on the two types of natural motions which are walking trajectories on a t1at floor and on an ascent. Learning based neuro-fuzzy system employed has good learning capability and computational performance. The results from neuro-fuzzy system are compared with previous approach.

Design of Neuro-Fuzzy Controllers for DC Motor Systems with Friction

  • Kim, Min-Jae;Jun oh Jang;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.70-70
    • /
    • 2000
  • Recently, a neuro-fuzzy approach, a combination of neural networks and fuzzy reasoning, has been playing an important role in the motor control. In this paper, a novel method of fiction compensation using neuro-fuzzy architecture has been shown to significantly improve the performance of a DC motor system with nonlinear friction characteristics. The structure of the controller is the neuro-fuzzy network with the TS(Takagi-Sugeno) model. A back-propagation neural network based on a gradient descent algorithm is employed, and all of its parameters can be on-line trained. The performance of the proposed controller is compared with both a conventional neuro-controller and a PI controller.

  • PDF