• Title/Summary/Keyword: neuro-controller

Search Result 221, Processing Time 0.029 seconds

Neuro-fuzzy Control for Balancing a Two-wheel Mobile Robot (이륜구동 이동로봇의 균형을 위한 뉴로 퍼지 제어)

  • Park, Young Jun;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.40-45
    • /
    • 2016
  • This paper presents the neuro-fuzzy control method for balancing a two-wheel mobile robot. A two-wheel mobile robot is built for the experimental studies. On-line learning algorithm based on the back-propagation(BP) method is derived for the Takagi-Sugeno(T-S) neuro-fuzzy controller. The modified error is proposed to learn the B-P algorithm for the balancing control of a two-wheel mobile robot. The T-S controller is implemented on a DSP chip. Experimental studies of the balancing control performance are conducted. Balancing control performances with disturbance are also conducted and results are evaluated.

The Design of Auto Tuning Neuro-Fuzzy PID Controller Based Neural Network (신경회로망 기반 자동 동조 뉴로-퍼지 PID 제어기 설계)

  • Kim, Young-Sik;Lee, Chang-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.830-836
    • /
    • 2006
  • In this paper described an auto tuning neuro-fuzzy PID controller based neural network. The PID type controller has been widely used in industrial application due to its simply control structure, easy of design, and inexpensive cost. However, control performance of the PID type controller suffers greatly from high uncertainty and nonlinearity of the system, large disturbances and so on. In this paper will design to take advantage of neural network fuzzy theory and pid controller auto toning technique. The value of initial scaling factors of the proposed controller were determined on the basis of the conventional PID controller parameters tuning methods and then they were adjusted by using neural network control techniques. This controller simple structure and computational complexity are less, and also application is easy and performance is excellent in system that is strong and has nonlinearity to system dynamic behaviour change or disturbance. Finally, the proposed auto tuning neuro-fuzzy controller is applied to magnetic levitation. Simulation results demonstrated that the control performance of the proposed controller is better than that of the conventional controller.

  • PDF

Preliminary Test of Adaptive Neuro-Fuzzy Inference System Controller for Spacecraft Attitude Control

  • Kim, Sung-Woo;Park, Sang-Young;Park, Chan-Deok
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.389-395
    • /
    • 2012
  • The problem of spacecraft attitude control is solved using an adaptive neuro-fuzzy inference system (ANFIS). An ANFIS produces a control signal for one of the three axes of a spacecraft's body frame, so in total three ANFISs are constructed for 3-axis attitude control. The fuzzy inference system of the ANFIS is initialized using a subtractive clustering method. The ANFIS is trained by a hybrid learning algorithm using the data obtained from attitude control simulations using state-dependent Riccati equation controller. The training data set for each axis is composed of state errors for 3 axes (roll, pitch, and yaw) and a control signal for one of the 3 axes. The stability region of the ANFIS controller is estimated numerically based on Lyapunov stability theory using a numerical method to calculate Jacobian matrix. To measure the performance of the ANFIS controller, root mean square error and correlation factor are used as performance indicators. The performance is tested on two ANFIS controllers trained in different conditions. The test results show that the performance indicators are proper in the sense that the ANFIS controller with the larger stability region provides better performance according to the performance indicators.

Design of a Web-based Autonomous Under-water Mobile Robot Controller Using Neuro-Fuzzy in the Dynamic Environment (동적 환경에서 뉴로-퍼지를 이용한 웹 기반 자율 잠수 이동로봇 제어기 설계)

  • 최규종;신상운;안두성
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.1
    • /
    • pp.77-83
    • /
    • 2003
  • Autonomous mobile robots based on the Web have been already used in public places such as museums. There are many kinds of problems to be solved because of the limitation of Web and the dynamically changing environment. We present a methodology for intelligent mobile robot that demonstrates a certain degree of autonomy in navigation applications. In this paper, we focus on a mobile robot navigator equipped with neuro-fuzzy controller which perceives the environment, make decisions, and take actions. The neuro-fuzzy controller equipped with collision avoidance behavior and target trace behavior enables the mobile robot to navigate in dynamic environment from the start location to goal location. Most telerobotics system workable on the Web have used standard Internet techniques such as HTTP, CGI and Scripting languages. However, for mobile robot navigations, these tools have significant limitations. In our study, C# and ASP.NET are used for both the client and the server side programs because of their interactivity and quick responsibility. Two kinds of simulations are performed to verify our proposed method. Our approach is verified through computer simulations of collision avoidance and target trace.

Nonlinear control of structure using neuro-predictive algorithm

  • Baghban, Amir;Karamodin, Abbas;Haji-Kazemi, Hasan
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1133-1145
    • /
    • 2015
  • A new neural network (NN) predictive controller (NNPC) algorithm has been developed and tested in the computer simulation of active control of a nonlinear structure. In the present method an NN is used as a predictor. This NN has been trained to predict the future response of the structure to determine the control forces. These control forces are calculated by minimizing the difference between the predicted and desired responses via a numerical minimization algorithm. Since the NNPC is very time consuming and not suitable for real-time control, it is then used to train an NN controller. To consider the effectiveness of the controller on probability of damage, fragility curves are generated. The approach is validated by using simulated response of a 3 story nonlinear benchmark building excited by several historical earthquake records. The simulation results are then compared with a linear quadratic Gaussian (LQG) active controller. The results indicate that the proposed algorithm is completely effective in relative displacement reduction.

The Control of the Rotary Inverted Pendulum System using Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 원형 역진자 시스템의 제어)

  • 이주원;채명기;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.45-49
    • /
    • 1997
  • In this paper, we controlled a Rotary Inverted Pendulum System using Neuro-Fuzzy Controller(NFC). The inverted pendulum system is widely used as a typical example of an unstable nonlinear control system which is difficult to control. Fuzzy theory have been because membership functions and rules of a fuzzy controller are often given by experts or a fuzzy logic control system. This controller is a feedforward multilayered network which integrates the basic elements and functions of a tradtional fuzzy logic controller into a connectionist structure which has distributed learning abilities. Such NFC can be constructed from training examples by learning rule, and the structure can be trained to develop fuzzy logic rules and find optimal input/output membership functions. Using this controller, we presented the results that controlled a Rotary Inverted Pendulum System and the associated algorithms.

  • PDF

Adaptive Fuzzy Neuro Controller for Speed Control of Induction Motor

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.9-15
    • /
    • 2012
  • This paper is proposed the adaptive fuzzy neuro controller(AFNC) for high performance of induction motor drive. The design of this algorithm based on the AFNC that is implemented using fuzzy controller(FC) and neural network(NN). This controller uses fuzzy rule as training patterns of a NN. Also, this controller adjusts the weights between the neurons of NN to minimize the error between the command output and the actual output using the back-propagation method. The control performance of the AFNC is evaluated by analysis in various operating conditions. The results of analysis prove that the proposed control system has high performance and robustness to parameter variation, and steady-state accuracy and transient response.

Control of Nonminimum Phase Systems with Neural Networks and Genetic Algorithm

  • Park, Lae-Jeong;Park, Sangbong;Bien, Zeugnam;Park, Cheol-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.35-49
    • /
    • 1994
  • It is well known that, for nominimum phase systems, a conventional linear controller of PID type or an adaptive controller of this structure shows limitation in achieving a satisfactory performance under tight specifications. In this paper, we combine a neuro-controller with a PI-controller with off-line learning capability provided by the Genetic Algorithm to propose a novel neuro-controller to control nonminimum phase systems effectively. The simulation results show that our proposed model is more efficient with faster rising time and less undershoot effect when the performances of the proposed controller and a conventional form are compared.

  • PDF

A Fuzzy Model of Systems using a Neuro-fuzzy Network

  • 정광손;박종국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.21-27
    • /
    • 1997
  • Neuro-fuzzy network that combined advantages of the neural network in learning and fuzzy system in inferencing can be used to establish a system model in the design of a controller. In this paper, we presented the neuro-fuzzy system that can be able to generated a linguistic fuzzy model which results in a similar input/output response to the original system. The network was used to model a system. We tested the performance ot the neuro-fuzzy network through computer simulations.

  • PDF

Design of Neuro-Fuzzy Controller using Relative Gain Matrix (상대 이득 행렬을 이용한 뉴로-퍼지 제어기의 설계)

  • Seo Sam-Jun;Kim Dongwon;Park Gwi-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • In the fuzzy control for the multi-variable system, it is difficult to obtain the fuzzy rule. Therefore, the parallel structure of the independent single input-single output fuzzy controller using a pairing between the input and output variable is applied to the multi-variable system. However, among the input/output variables which arc not paired the interactive effects should be taken into account. these mutual coupling of variables affect the control performance. Therefore, for the control system with a strong coupling property, the control performance is sometimes lowered. In this paper, the effect of mutual coupling of variables is considered by the introduction of a neuro-fuzzy controller using relative gain matrix. This proposed neuro-fuzzy controller automatically adjusts the mutual coupling weight between variables using a neural network which is realized by back-propagation algorithm. The good performance of the proposed nero-fuzzy controller is verified through computer simulations on 200MW boiler systems.