• Title/Summary/Keyword: neuro-controller

Search Result 221, Processing Time 0.021 seconds

The Design of an Adaptive Neuro-Fuzzy Controller for a Temperature Control System (온도 제어 시스템을 위한 뉴로-퍼지 제어기의 설계)

  • 곽근창;김성수;이상혁;유정웅
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.493-496
    • /
    • 2000
  • In this paper, an adaptive neuro-fuzzy controller using the conditional fuzzy c-means(CFCM) methods is proposed. Usually, the number of fuzzy rules exponentially increases by applying the grid partitioning of the input space, in conventional adaptive neuro-fuzzy inference system(ANFIS) approaches. In order to solve this problem, CFCM method is adopted to render the clusters which represent the given input and output data. Finally, we applied the proposed method to the water path temperature control system and obtained a better performance than previous works.

  • PDF

Design & application of adaptive fuzzy-neuro controllers (적응 퍼지-뉴로 제어기의 설계와 응용)

  • Kang, Kyeng-Wuon;Kim, Yong-Min;Kang, Hoon;Jeon, Hong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.710-717
    • /
    • 1993
  • In this paper, we focus upon the design and applications of adaptive fuzzy-neuro controllers. An intelligent control system is proposed by exploiting the merits of two paradigms, a fuzzy logic controller and a neural network, assuming that we can modify in real time the consequential parts of the rulebase with adaptive learning, and that initial fuzzy control rules are established in a temporarily stable region. We choose the structure of fuzzy hypercubes for the fuzzy controller, and utilize the Perceptron learning rule in order to update the fuzzy control rules on-line with the output error. And, the effectiveness and the robustness of this intelligent controller are shown with application of the proposed adaptive fuzzy-neuro controller to control of the cart-pole system.

  • PDF

Implementation of a Sightseeing Multi-function Controller Using Neural Networks

  • Jae-Kyung, Lee;Jae-Hong, Yim
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.45-53
    • /
    • 2023
  • This study constructs various scenarios required for landscape lighting; furthermore, a large-capacity general-purpose multifunctional controller is designed and implemented to validate the operation of the various scenarios. The multi-functional controller is a large-capacity general-purpose controller composed of a drive and control unit that controls the scenarios and colors of LED modules and an LED display unit. In addition, we conduct a computer simulation by designing a control system to represent the most appropriate color according to the input values of the temperature, illuminance, and humidity, using the neuro-control system. Consequently, when examining the result and output color according to neuro-control, unlike existing crisp logic, neuro-control does not require the storage of many data inputs because of the characteristics of artificial intelligence; the desired value can be controlled by learning with learning data.

The Adaptive-Neuro Control of Robot Manipulator Based-on TMS320C50 Chip (TMS320C50칩을 이용한 로봇 매니퓰레이터의 적응-신경제어)

  • 이우송;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.305-311
    • /
    • 2003
  • We propose a new technique of adaptive-neuro controller design to implement real-time control of robot manipulator, Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of loaming a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-neuro control scheme is proved to be a efficient control technique for real time control of robot system using DSPs(TMS320C50)

  • PDF

Semiactive Neuro-control for Seismically Excited Structure Considering Dynamics of MR Damper (지진하중을 받는 구조물의 MR 유체 감쇠기를 이용한 반능동 신경망제어)

  • 이헌재;정형조;오주원;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.403-410
    • /
    • 2003
  • A new semiactive control strategy for seismic response reduction using a neuro-controller and a magnetorheological (MR) fluid damper is proposed. The proposed control system adopts a clipped algorithm which induces the MR damper to generate approximately the desired force. The improved neuro - controller, which was developed by employing the training algorithm based on a cost function and the sensitivity evaluation algorithm replacing an emulator neural network, produces the desired active control force, and then by using the clipped algorithm the appropriate command voltage is selected in order to cause the MR damper to generate the desired control force. The simulation results show that the proposed semiactive neuro-control algorithm is quite effective to reduce seismic responses. In addition, the semi-active control system using MR fluid dampers has many attractive features, such as the bounded-input, bounded-output stability and small energy requirements. The results of this investigation, therefore, indicate that the proposed semi-active neuro-control strategy using MR fluid dampers could be effectively used for control of seismically excited structures.

  • PDF

Fuzzy-Neuro Controller for Control of Air-Conditioning System

  • Lee, Sang-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.33-42
    • /
    • 1995
  • A practical application of a fuzzy-neuro controller is described for an air-conditioning system. Air-handing units are being widely used for improving the performance of central air-conditioning systems. The fuzzy-neuro control system has two controlled variables, temperature and humidity and three control elements, cooling, heating, and humidification. In order to achieve high efficiency and economical contorl, especially in large offices and industrial buildings, two controllable parameters, temperature and humidity, must be adequately controlled by the three final controlling elements. In this paper a fuzzy-neuro control system is described for controlling air-conditioning systems efficiently and economically. Simulation results confirmed that the fuzzy neuro control system is effective for this multivariable system.

  • PDF

Semiactive Neuro-control for Seismically Excited Structure considering Dynamics of MR Damper (자기유변유체감쇠기의 동특성을 고려한 지진하중을 받는 구조물의 반능동 신경망제어)

  • 이헌재;정형조;오주원;이인원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.473-480
    • /
    • 2003
  • A new semiactive control strategy for seismic response reduction using a neuro-controller and a magnetorheological (MR) fluid damper is proposed. The proposed control system adopts a clipped algorithm which induces the MR damper to generate approximately the desired force. The improved neuro-controller, which was developed by employing the training algorithm based on a cost function and the sensitivity evaluation algorithm replacing an emulator neural network, produces the desired active control force, and then by using the clipped algorithm the appropriate command voltage is selected in order to cause the MR damper to generate the desired control force. The simulation results show that the proposed semiactive neuro-control algorithm is quite effective to reduce seismic responses. In addition, the semiactive control system using MR fluid dampers has many attractive features, such as bounded-input, bounded-output stability and small energy requirements. The results of this investigation, therefore, indicate that the proposed semiactive neuro-control strategy using MR fluid dampers could be effective used for control seismically excited structures.

  • PDF

Neuro-controller for a XY positioning table (XY 테이블의 신경망제어)

  • Jang, Jun Oh
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.375-382
    • /
    • 2004
  • This paper presents control designs using neural networks (NN) for a XY positioning table. The proposed neuro-controller is composed of an outer PD tracking loop for stabilization of the fast flexible-mode dynamics and an NN inner loop used to compensate for the system nonlinearities. A tuning algorithm is given for the NN weights, so that the NN compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded weight estimates. Formal nonlinear stability proofs are given to show that the tracking error is small. The proposed neuro-controller is implemented and tested on an IBM PC-based XY positioning table, and is applicable to many precision XY tables. The algorithm, simulation, and experimental results are described. The experimental results are shown to be superior to those of conventional control.

A Neuro-contouring controller for High-precision CNC Machine Tools (고정밀 CNC 머신을 위한 신경망 윤과제어)

  • 이현철;주정홍;전기준
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.1-7
    • /
    • 1997
  • In this paper, a neuro-contouring control scheme for the high precision machining of CNC machine tools is descrihed. The proposed control system consists of a conventional controller for each axis and an additional neuro-controller. For contouring control, the contour error must be computed during realtime motion, but generally the contour error for nonlinear contours is difficult to he directly computed. We, therefore, propose a new contour error model to approximate real error more exactly, and here we also introduce a cost function for better contouring performance and derive a learning law to adjust the weights of the neuro-controller. The derived learning law guarantees good contouring performance. Usefulness of the proposed control scheme is demonstrated hy computer simulations.

  • PDF

Stabilization Control of Nonlinear System Using Adaptive Neuro-Fuzzy Controller (적응 뉴로-퍼지 제어기를 이용한 비선형 시스템의 안정화 제어)

  • Lee, In-Yong;Tack, Han-Ho;Lee, Sang-Bae;Park, Boo-Gue
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.730-737
    • /
    • 2001
  • In this paper, an stabilization control method using adaptive neuro-fuzzy controller(ANFC) is proposed for modeling of nonlinear complex systems. The proposed adaptive neuro-fuzzy controller implements system structure and parameter identification using the intelligent schemes together with optimization theory, linguistic fuzzy implication rules, and neural networks from input and output data of processes. The results show that the proposed method can produce the intelligence model with higher accuracy than other works achieved previously.

  • PDF