• Title/Summary/Keyword: neuro-controller

Search Result 221, Processing Time 0.024 seconds

Neuro-Fuzzy Control of Inverted Pendulum System for Intelligent Control Education

  • Lee, Geun-Hyung;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.309-314
    • /
    • 2009
  • This paper presents implementation of the adaptive neuro-fuzzy control method. Control performance of the adaptive neuro-fuzzy control method for a popular inverted pendulum system is evaluated. The inverted pendulum system is designed and built as an education kit for educational purpose for engineering students. The educational kit is specially used for intelligent control education. Control purpose is to satisfy balancing angle and desired trajectory tracking performance. The adaptive neuro-fuzzy controller has the Takagi-Sugeno(T-S) fuzzy structure. Back-propagation algorithm is used for updating weights in the fuzzy control. Control performances of the inverted pendulum system by PID control method and the adaptive neuro-fuzzy control method are compared. Control hardware of a DSP 2812 board is used to achieve the real-time control performance. Experimental studies are conducted to show successful control performances of the inverted pendulum system by the adaptive neuro-fuzzy control method.

Neuro-Adaptive Vibration Control of a Composite Beam with Optical Fiber Sensor (신경망 제어기를 이용한 광섬유가 부착된 복합재 보의 진동제어)

  • Kim, Do-Hyung;Yang, Seung-Man;Han, Jae-Hung;Kim, Dae-Hyun;Lee, In;Kim, Chun-Gon;Hong, Chang-Sun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.135-138
    • /
    • 2002
  • Experimental studies on vibration control of a composite beam with a piezoelectric actuator and an extrinsic Fabry-Perot interferometer (EFPI) have been performed using a neural network controller and an LQG controller. Vibration control performance was investigated in the nonlinear sensing range according to the vibration amplitudes. Using a neuro-controller, adaptive vibration control experiment has been performed for the structure with frequency variations, and its performance is compared with that of an LQG controller. The vibration control results show that the neuro-controller has good performance and robustness with respect to the system parameter variations.

  • PDF

Design of Simple Neuro-controller for Global Transient Control and Voltage Regulation of Power Systems

  • Jalili-Kharaajoo Mahdi;Mohammadi-Milasi Rasoul
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.302-307
    • /
    • 2005
  • A novel neuro controller based simple neuro-structure with modified error function is introduced in this paper. This controller consists of two independent controllers, known as the voltage regulator and the angular controller. The voltage regulator is used to modify terminal voltage for the purpose of tracking a reference voltage. The angular controller is utilized to guarantee the stability of the system. In this structure each neuron uses a linear hard limit activation function that depends on the controlled variable and its derivatives. There is no need for parameter identification or any off-line training data. Two proposed controllers are merged by a smooth switch to build a complete controller. The effectiveness of the proposed novel control action is demonstrated through some computer simulations on a Single-Machine Infinite-Bus (SMIB) power system.

Maximum Torque Control of Induction Motor using Adaptive Learning Neuro Fuzzy Controller (적응학습 뉴로 퍼지제어기를 이용한 유도전동기의 최대 토크 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Jung, Byung-Jin;Kang, Sung-Joon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.778_779
    • /
    • 2009
  • The maximum output torque developed by the machine is dependent on the allowable current rating and maximum voltage that the inverter can supply to the machine. Therefore, to use the inverter capacity fully, it is desirable to use the control scheme considering the voltage and current limit condition, which can yield the maximum torque per ampere over the entire speed range. The paper is proposed maximum torque control of induction motor drive using adaptive learning neuro fuzzy controller and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d, q axis current $_i_{ds}$, $i_{qs}$ for maximum torque operation is derived. The proposed control algorithm is applied to induction motor drive system controlled adaptive learning neuro fuzzy controller and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the adaptive learning neuro fuzzy controller and ANN controller.

  • PDF

Design of a Neuro-Euzzy Controller for Hydraulic Servo Systems (유압서보 시스템을 위한 뉴로-퍼지 제어기 설계)

  • 김천호;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.101-111
    • /
    • 1993
  • Many processes such as machining, injection-moulding and metal-forming are usually operated by hydraulic servo-systems. The dynamic characteristics of these systems are complex and highly non-linear and are often subjected to the uncertain external disturbances associated with the processes. Consequently, the conventional approach to the controller design for these systems may not guarantee accurate tracking control performance. An effective neuro-fuzzy controller is proposed to realize an accurate hydraulic servo-system regardless of the uncertainties and the external disturbances. For this purpose, first, we develop a simplified fuzzy logic controller which have multidimensional and unsymmetric membership functions. Secondly, we develop a neural network which consists of the parameters of the fuzzy logic controller. It is show that the neural network has both learning capability and linguistic representation capability. The proposed controller was implemented on a hydraulic servo-system. Feedback error learning architecture is adopted which uses the feedback error directly without passing through the dynamics or inverse transfer function of the hydraulic servo-system to train the neuro-fuzzy controller. A series of simulations was performed for the position-tracking control of the system subjected to external disturbances. The results of simulations show that regardless of inherent non-linearities and disturbances, an accuracy tracking-control performance is obtained using the proposed neuro-fuzzy controller.

Control of Pendulum using Hybrid Neuro-controller (하이브리드 뉴로제어기를 이용한 진자의 제어)

  • 박규태;박정일;이석규
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.809-812
    • /
    • 1999
  • The pendulum is a SIMO(Single-input multi-output) system that both angle of pendulum and position of cart controlled simultaneously by one actuator. In this paper, propose a hybrid neuro-controller to apply to pendulum system. We design the conventional optimal controller and the neural network as a identifier, which can identify the uncertainty of plant not modeled, respectively. Then we combine them into a novel controller, with a structure that the error between plant and identifier is added in conventional optimal control input Finally, the paper shows the validity of the proposed controller through computer simulations and experiments.

  • PDF

Load Frequency Control of Multi-area Power System using Auto-tuning Neuro-Fuzzy Controller (자기조정 뉴로-퍼지제어기를 이용한 다지역 전력시스템의 부하주파수 제어)

  • Jeong, Hyeong-Hwan;Kim, Sang-Hyo;Ju, Seok-Min;Heo, Dong-Ryeol;Lee, Gwon-Sun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.3
    • /
    • pp.95-106
    • /
    • 2000
  • The load frequency control of power system is one of important subjects in view of system operation and control. That is even though the rapid load disturbances were applied to the given power system, the stable and reliable power should be supplied to the users, converging unconditionally and rapidly the frequency deviations and the tie-line power flow one on each area into allowable boundary limits. Nonetheless of such needs, if the internal parameter perturbation and the sudden load variation were given, the unstable phenomenal of power system can be often brought out because of the large frequency deviation and the unsuppressible power line one. Therefore, it is desirable to design the robust neuro-fuzzy controller which can stabilize effectively the given power system as soon as possible. In this paper the robust neuro-fuzzy controller was proposed and applied to control of load frequency over multi-area power system. The architecture and algorithm of a designed NFC(Neuro-Fuzzy Controller) were consist of fuzzy controller and neural network for auto tuning of fuzzy controller. The adaptively learned antecedent and consequent parameters of membership functions in fuzzy controller were acquired from the steepest gradient method for error-back propagation algorithm. The performances of the resultant NFC, that is, the steady-state deviations of frequency and tie-line power flow and the related dynamics, were investigated and analyzed in detail by being applied to the load frequency control of multi-area power system, when the perturbations of predetermined internal parameters. Through the simulation results tried variously in this paper for disturbances of internal parameters and external stepwise load stepwise load changes, the superiorities of the proposed NFC in robustness and adaptive rapidity to the conventional controllers were proved.

  • PDF

A Sensorless MPPT Control Using an Adaptive Neuro-Fuzzy Logic for PV Battery Chargers (태양광 배터리 충전기를 위한 적응형 신경회로망-퍼지로직 기반의 센서리스 MPPT 제어)

  • Kim, Jung-Hyun;Kim, Gwang-Seob;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.349-358
    • /
    • 2013
  • In this paper, the sensorless MPPT algorithm is proposed where the performance of varied duty ratio change has been improved using multi-layer neuro-fuzzy that aligns with neuro-fuzzy based optimized membership function. Since the change of duty ratio of sensorless MPPT is varied by using the neuro-fuzzy, the MPPT response speed is faster than the convectional method and is able to reduce the steady-state ripple. The neuro fuzzy controller has the response characteristics which is superior to the existing fuzzy controller, because of the usage of the optimal width of the fuzzy membership function. The effectiveness of the proposed method has been verified by simulations and experimental results.

A Study on the Feedforward Neural Network Based Decentralized Controller for the Power System Stabilization (전력계토 안정화 제어를 위한 신경회로만 분산체어기의 구성에 관한 연구)

  • 최면송;박영문
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.4
    • /
    • pp.543-552
    • /
    • 1994
  • This paper presents a decentralized quadratic regulation architecture with feedforward neural networks for the control problem of complex systems. In this method, the decentralized technique was used to treat several simple subsystems instead of a full complex system in order to reduce training time of neural networks, and the neural networks' nonlinear mapping ability is exploited to handle the nonlinear interaction variables between subsystems. The decentralized regulating architecture is composed of local neuro-controllers, local neuro-identifiers and an overall interaction neuro-identifier. With the interaction neuro-identifier that catches interaction characteristics, a local neuro-identifier is trained to simulate a subsystem dynamics. A local neuro-controller is trained to learn how to control the subsystem by using generalized Backprogation Through Time(BTT) algorithm. The proposed neural network based decentralized regulating scheme is applied in the power System Stabilization(PSS) control problem for an imterconnected power system, and compared with that by a conventional centralized LQ regulator for the power system.

A Study on Design of Neuro- Fuzzy Controller for Attitude Control of Helicopter (헬리콥터 자세제어를 위한 뉴로 퍼지 제어기의 설계에 관한 연구)

  • Choi, Yong-Sun;Lim, Tae-Woo;Jang, Gung-Won;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2283-2285
    • /
    • 2001
  • This paper proposed to a neural network based fuzzy control (neuro-fuzzy control) technique for attitude control of helicopter with strongly dynamic nonlinearities and derived a helicopter aerodynamic torque equation of helicopter and the force balance equation. A neuro-fuzzy system is a feedforward network that employs a back-propagation algorithm for learning purpose. A neuro-fuzzy system is used to identify nonlinear dynamic systems. Hence, this paper presents methods for the design of a neural network(NN) based fuzzy controller(that is, neuro-fuzzy control) for a helicopter of nonlinear MIMO systems. The proposed neuro-fuzzy control determined to a input-output membership function in fuzzy control and neural networks constructed to improve through learning of input-output membership functions determined in fuzzy control.

  • PDF