• Title/Summary/Keyword: neuro-controller

Search Result 221, Processing Time 0.026 seconds

The power regulation of a High-Frequency Induction Heating System using Neuro-Fuzzy controller (뉴로퍼지제어기를 이용한 고주파 유도가열기의 정전력제어)

  • 장종승;설재훈;박종오;임영도;최부귀
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.41-44
    • /
    • 1997
  • 본 논문에서는 뉴로퍼지제어기를 이용한 유도가열기의 시변부하에 대한 적응 정전력 제어를 하고자 한다. 유도가열기의 정전력 조절을 위해 IGBT를 사용한 위상전이형 펄스폭변조(PWM)와 PLL에 의한 부하공진주파수 추종형 펄스 주파수변수(PFM)가 조절되는 공진 고주파 인버터를 유용한 유도가열기를 설명하고, 실험 제작된 유도가열기에서의 부하에 대한 규정 전력 추종이 잘되고 있음이 실제적으로 논증되어졌다.

  • PDF

Frequency Analysis of Adaptive Behavior of NEAT based Control for Snake Modular Robot (뱀형 모듈라 로봇을 위한 NEAT 기반 제어의 적응성에 대한 주파수 분석)

  • Lee, Jaemin;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1356-1362
    • /
    • 2015
  • Modular snake-like robots are robust for failure and have flexible locomotions for obstacle environment than of walking robot. This requires an adaptation capability which is obtained from a learning approach, but has not been analysed as well. In order to investigate the property of adaptation of locomotion for different terrains, NEAT controllers are trained for a flat terrain and tested for obstacle terrains. The input and output characteristics of the adaptation for the neural network controller are analyzed for different terrains in frequency domain.

Neuro controller of the robot manipulator using fuzzy logic (퍼지 논리를 이용한 로보트 매니퓰레이터의 신경 제어기)

  • 김종수;이홍기;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.866-871
    • /
    • 1991
  • The multi-layer neural network possesses the desirable characteristics of parallel distributed processing and learning capacity, by which the uncertain variation of the parameters in the dynamically complex system can be handled adoptively. However the error back propagation algorithm that has been utilized popularly in the learning procedure of the mulfi-Jayer neural network has the significant limitations in the real application because of its slow convergence speed. In this paper, an approach to improve the convergence speed is proposed using the fuzzy logic that can effectively handle the uncertain and fuzzy informations by linguistic level. The effectiveness of the proposed algorithm is demonstrated by computer simulation of PUMA 560 robot manipulator.

  • PDF

Time-optimal Control Utilizing Beural Networks (신경회로망을 이용한 시간최적 제어)

  • Park, W.W.;J.S. Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.90-98
    • /
    • 1997
  • A time-optimal control law for quick, strongly nonlinear systems has been developed and demonstrated. This procedure involves the utilzation of neural networks as state feedback controllers that learn the time-optimal control actions by means of an iterative minimization of both the final time and the final state error for the systems with constrained inputs and/or states. A neural identifier or a genetic algorithm identifier could be utilized for modeling the partially known systems and the unknown systems. The nature of neural networks as a parallel processor would circumvent the problem of "curwe of dimensionality". The control law has been demonstrated for both a torque input motor and a velocity input motor identified by a genetic algorithm called GENOCOPed GENOCOP.

  • PDF

Vibration Control of Intelligent Structures via ER Fluids and Piezoelectric Film Actuators (전기유동유체와 압전필름 액튜에이터를 이용한 지능구조물의 진동제어)

  • 박용군;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.249-253
    • /
    • 1995
  • 본 연구에서는 잠재적 응용성이 큰 ER유체와 압전필름을 액튜에이터로 하는 하이브리드형 지능구조물을 제안한 후 능동 진동제어를 실시하였다. 먼저 중공(hollow)의 샌드위치 형태 복합재료(glass/epoxy)보에 ER유체와 압전필름을 각각 삽입과 접착을 하여 하이브리드형 지능구조물을 제작하였다. 그리고 각 매체의 액튜에이팅 특성을 고려하여, ER유체 액튜에이터(ERFA)는 전장부하 함수로 도출되는 구조물의 주파수응답을 특징으로 하였고, 압전필름 액튜에이터(PFA)는 신경 슬라이딩 모드 제어기 (neuro sliding mode controller : NSC)를 적용하였다. 이 두 액튜에이터가 동시에 작동하는 능동 진동제어계를 실험적으로 구현한 후 과도응답과 강제 응답에 대한 진동제어 성능을 단일 액튜에이터 작동시와 비교 고찰하여 제시된 하이브리드 액튜에이팅의 효과를 입증하였다.

  • PDF

The Structure and Parameter Optimization of the Fuzzy-Neuro Controller (퍼지 신경망 제어기의 구조 및 매개 변수 최적화)

  • Chang, Wook;Kwon, Oh-Kook;Joo, Young-Hoon;Yoon, Tae-Sung;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.739-742
    • /
    • 1997
  • This paper proposes the structure and parameter optimization technique of fuzzy neural networks using genetic algorithm. Fuzzy neural network has advantages of both the fuzzy inference system and neural network. The determination of the optimal parameters and structure of the fuzzy neural networks, however, requires special efforts. To solve these problems, we propose a new learning method for optimization of fuzzy neural networks using genetic algorithm. It can optimize the structure and parameters of the entire fuzzy neural network globally. Numerical example is provided to show the advantages of the proposed method.

  • PDF

SOC-based Sequencing Equalizer for Parallel-connected Battery Configuration using ANFIS Algorithm

  • Duong, Tan-Quoc;La, Phuong-Ha;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.174-175
    • /
    • 2019
  • Battery cells are connected in parallel to enlarge the system capacity. However, cell inconsistency may reduce the overall system capacity and cause the over-charging or over-discharging issue. This paper proposes a SOC-based sequencing equalizer for parallel-connected battery configuration that uses the ANFIS (adaptive neuro-fuzzy inference system) algorithm to make the switching decision. Depend on the load current and the SOC (state-of-charge) rate of cells, the switching decision is made to equalize the SOC of the battery cells. The simulation results show that the system capacity is maximized and the controller is adaptive for a large number of parallel-connected in dynamic load profile.

  • PDF

Implementation of Neuro-Fuzzy Controller for Noise Cancelling in a Cavity (밀폐공간 소음제어를 위한 뉴로-퍼지 제어기 구현)

  • 박희경;공성곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.282-288
    • /
    • 1998
  • 본 논문에서는 뉴로-퍼지 제어기를 이용하여 밀폐공간에서의 능동 소음 제어기를 구현하였다. 능동 소음 제어기는 잡음에 의하여 왜곡된 신호로부터 잡음을 제거하여 원 신호를 복원하는 제어시스템이다. 일반적으로 잡음의 특성이 시간에 따라 변화라고, 전달특성이 비선형적이므로 고정된 제어기에 의해서는 제어할 수 없다. 이 논문에서는 뉴로-퍼지 제어기를 사용하여 파라미터를 오차 역전파 학습을 통하여 변화시킴으로써 잡응의 특성에 효과적을 적응하는 능동 소음 제어기를 구성하였다. 원신호는 음성신호를 사용하였으며 실제 소음과 소음 전달경로인 1차경로를 통과한 왜곡된 소음은 실험에 의해 얻은 데이터를 사용하였다. 제어신호의 전달경로인 2차경로는 100[kHz]에서 1[kHz]까지의 주파수 특성을 고려하여 curve fitting 방법을 사용하여 4차로 모델링한 결과를 사용하였다. 제안한 능동 소음 제어기의 성능을 시뮬레이션을 통하여 확인하였다.

  • PDF

An Optimal Design of Neuro-Fuzzy Logic Controller Using Lamarckian Co-adaptation (라마키안 상호 적응에 의한 뉴로-퍼지 제어기의 최적 설계)

  • 이한별;김대진
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.384-389
    • /
    • 1998
  • 본 논문은 특정 응용에 적합한 퍼지 제어기의 최적 설계 파라메터(퍼지 규칙과 소속 함수)를 찾는데 역전파 학습 과정과 유전 알고리즘을 결합한 Lamarckian 상호적응 기법을 이용한 뉴로-퍼지 제어기의 새로운 설계 방법을 제안한다. 설계 파라메타들은 진화에 의한 전역적 탐색을 통해 높은 포함값과 유용한 퍼지 규칙들을 갖는 규칙 베이스와 작은 근사화 오차와 좋은 제어 성능을 갖는 소속 함수들을 얻도록 제어기간 파라메타 조절을 수행하며, 학습에 의한 국부적 탐색을 통해 각 퍼지 제어기가 원하는 제어 결과를 나타내도록 제어기내 파라메타 조절을 수행한다. 제안한 상호적응 설계 방법은 유전 알고리즘의 모든 세대에서 역전파 학습이 이루어지므로 보다 좋은 근사화 능력을 나타나고, 사용한 무게 중심 비퍼지화기가 정확한 비퍼지화값을 계산하므로 보다 좋은 제어 성능을 가지며, 퍼지 규칙 베이스와 소속 함수들의 최적화 탐색 과정이 입출력 공간의 같은 퍼지 분할 상에서 통합된 적응 함수에 의하여 동시에 수행되므로 탐색을 위한 작업 공간이 아주 작아지는 장점이 있다. 시뮬레이션 결과는 Lamarckian 상호 적응에 의해 얻어진 FLC가 퍼지 규\ulcorner 수, 근사화 능력, 제어 성능등 모든면에서 다른 방법에 의해 얻어진 FLC보다 가장 우수함을 보여준다.

  • PDF

Online Automatic Gauge Controller Tuning Method by using Neuro-Fuzzy Model in a Hot Rolling Plant

  • Choi, Sung-Hoo;Lee, Young-Kow;Kim, Sang-Woo;Hong, Sung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1539-1544
    • /
    • 2005
  • The gauge control of the fishing mill is very important because more and more accurately sized hot rolled coils are demanded by customers recently. Because the mill constant and the plasticity coefficient vary with the specifications of the mill, the classification of steel, the strip width, the strip thickness and the slab temperature, the variation of these parameters should be considered in the automatic gauge control system(AGC). Generally, the AGC gain is used to minimize the effect of the uncertain parameters. In a practical field, operators set the AGC gain as a constant value calculated by FSU (Finishing-mill Set-Up model) and it is not changed during the operating time. In this paper, the thickness data signals that occupy different frequency bands are respectively extracted by adaptive filters and then the main cause of the thickness variation is analyzed. Additionally, the AGC gain is adaptively tuned to reduce this variation using the online tuning model. Especially ANFIS(Adaptive-Neuro-based Fuzzy Interface System) which unifies both fuzzy logics and neural networks, is used for this gain adjustment system because fuzzy logics use the professionals' experiences about the uncertainty and the nonlinearity of the system. Simulation is performed by using POSCO's data and the results show that proposed on-line gain adjustment algorithm has a good performance.

  • PDF