• Title/Summary/Keyword: neuro-controller

Search Result 221, Processing Time 0.038 seconds

Design of Neuro Controller for Improving Velocity Control of AC Motor (AC MOTOR의 속도제어 개선을 위한 신경망제어기의 설계)

  • 설재훈;임영도
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.243-248
    • /
    • 1995
  • 본 논문에서는 신경회로망의 학습능력을 이용하여 AC 모터의 속도제어에 이용된 기 존의 PI제어기의 문제점을 보완하고자 한다. 기존의 아날로그 PI제어기에서는 각 비례, 적분 파라메타를 개발자가 조정하여 고정하면 부하가 변동될 경우 적응성이 떨어지는 문제점을 안고 있었다. 본 논문에서 제시된 디지털 신경망제어기는 학습을 통해 새로운 환경에 적응 가능하다는 점에 가정하여 설계하고 성능을 비교 평가하였다. 본 논문에서 사용된 신경회로 망의 구조는 신경망중에서 가장 범용적으로 사용되는 다층 퍼셉트론 모델구조를 선택하였 다. 신경망 제어기장치로는 인텔 8097 마이크로 콘트롤러를 이용하였다.

  • PDF

Application of Neural Network for the Intelligent Control of Computer Aided Testing and Adjustment System (자동조정기능의 지능형제어를 위한 신경회로망 응용)

  • 구영모;이승구;이영민;우광방
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.1
    • /
    • pp.79-89
    • /
    • 1993
  • This paper deals with a computer aided control of an adjustment process for the complete electronic devices by means of an application of artificial neural network and an implementation of neuro-controller for intelligent control. Multi-layer neural network model is employed as artificial neural network with the learning method of the error back propagation. Information initially available from real plant under control are the initial values of plant output, and the augmented plant input and its corresponding plant output at that time. For the intelligent control of adjustment process utilizing artificial neural network, the neural network emulator (NNE) and the neural network controller(NNC) are developed. The initial weights of each neural network are determined through off line learning for the given product and it is also employed to cope with environments of the another product by on line learning. Computer simulation, as well as the application to the real situation of proposed intelligent control system is investigated.

  • PDF

Neuro-Fuzzy Contro of Weld Pool Size in Arc Welding Robot System (1st Report : Fuzzy Control of Weld Pool Size) (아크용접 로보트시스템에서 용융지크기의 뉴로-퍼지 제어)

  • Jeon, Euy-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.89-95
    • /
    • 1997
  • Welding technique is widely applied to general industry such as pressure vessel for chemical plant, pipe system, heavy industry, and automobile. There are some points which must be considered when robot system is used in welding automation process for productivity improvement. Welding quality is governed by heat input, and this quantity can be different according to shape, property, and thick of material . For desired heat input , weld input parameters such as welding voltage, current, and welding velocity must be determined with those consideration. Until now these parameters have been determined mainly by experience of operator. In this study, the size of welding zone was predicted by fuzzy rules were constructed from the relation between welding variables and weld pool size. Inverse model method which welding control input for welder is determined with optimum voltage and current by fuzzy controller is validatied by computer simulation.

  • PDF

Design of Controller for Nonlinear Multivariable System Using Dynamic Neural Unit (동적신경망을 이용한 비선형 다변수 시스템의 제어기 설계)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1178-1183
    • /
    • 2008
  • The variable structure control(VSC) with sliding mode is an important and interesting topic in modern control of nonlinear systems. However, the discontinuous control law in VSC leads to undesirable chattering in practice. As a method solving this problem, in this paper, we propose a scheme of the VSC with neural network sliding surface. A neural network sliding surface with boundary layer is employed to solve discontinuous control law. The proposed controller can eliminate the chattering problem of the conventional VSC. The effectiveness of the proposed control scheme is verified by simulation results.

Optimization of Dynamic Neural Networks Considering Stability and Design of Controller for Nonlinear Systems (안정성을 고려한 동적 신경망의 최적화와 비선형 시스템 제어기 설계)

  • 유동완;전순용;서보혁
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.189-199
    • /
    • 1999
  • This paper presents an optimization algorithm for a stable Self Dynamic Neural Network(SDNN) using genetic algorithm. Optimized SDNN is applied to a problem of controlling nonlinear dynamical systems. SDNN is dynamic mapping and is better suited for dynamical systems than static forward neural network. The real-time implementation is very important, and thus the neuro controller also needs to be designed such that it converges with a relatively small number of training cycles. SDW has considerably fewer weights than DNN. Since there is no interlink among the hidden layer. The object of proposed algorithm is that the number of self dynamic neuron node and the gradient of activation functions are simultaneously optimized by genetic algorithms. To guarantee convergence, an analytic method based on the Lyapunov function is used to find a stable learning for the SDNN. The ability and effectiveness of identifying and controlling a nonlinear dynamic system using the proposed optimized SDNN considering stability is demonstrated by case studies.

  • PDF

A study on the computer aided testing and adjustment system utilizing artificial neural network

  • Koo, Young-Mo;Woo, Kwang-Bang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.65-69
    • /
    • 1992
  • In this paper, an implementation of neuro-controller with an application of artificial neural network for an adjustment and tuning process for the completed electronics devices is presented. Multi-layer neural network model is employed with the learning method of error back-propagation. For the intelligent control of adjustment and tuning process, the neural network emulator (NNE) and the neural network controller(NNC) are developed. Computer simulation reveals that the intelligent controllers designed can function very effectively as tools for computer aided adjustment system. The applications of the controllers to the real systems are also demonstrated.

  • PDF

Design of Fuzzy Controller using Genetic Algorithm with a Local Improvement Mechanism (부분개선 유전자알고리즘을 이용한 퍼지제어기의 설계)

  • Kim, Hyun-Su;Paul N., Roschke;Lee, Dong-Guen
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.469-476
    • /
    • 2005
  • To date, many viable smart base isolation systems have been proposed. In this study, a novel friction pendulum system (FPS) and an MR damper are employed as the isolator and supplemental damping device, respectively. A fuzzy logic controller (FLC) is used to modulate the MR damper. A genetic algorithm (GA) is used for optimization of the FLC. The main purpose of employing a GA is to determine appropriate fuzzy control rules as well to adjust parameters of the membership functions. To this end, a GA with a local improvement mechanism is applied. Neuro-fuzzy models are used to represent dynamic behavior of the MR damper and FPS. Effectiveness of the proposed method for optimal design of the FLC is judged based on computed responses to several historical earthquakes. It has been shown that the proposed method can find appropriate fuzzy rules and the GA-optimized FLC outperforms not only a passive control strategy but also a human-designed FLC and a conventional semi-active control algorithm.

  • PDF

Stable Adaptive On-line Neural Control for Wind Energy Conversion System (풍력 발전 계통의 적응 신경망 제어기 설계)

  • Park, Jang-Hyun;Kim, Seong-Hwan;Jang, Young-Hak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.838-842
    • /
    • 2011
  • This paper proposes an online adaptive neuro-controller for a wind energy conversion system (WECS) that is a highly nonlinear system intrinsically. In real application, to obtain exact system parameters such as power coefficient, many measuring instruments and implementations are required, which is very difficult to perform. This shortcoming can be avoided by introducing neural network in the controller design in this paper. The proposed adaptive neural control scheme using radial-basis function network (RBFN) needs no system parameters to meet control objectives. Combining derivative estimator for wind velocity, the whole closed-loop system is shown to be stable in the sense of Lyapunov.

Type-2 Fuzzy Logic Predictive Control of a Grid Connected Wind Power Systems with Integrated Active Power Filter Capabilities

  • Hamouda, Noureddine;Benalla, Hocine;Hemsas, Kameleddine;Babes, Badreddine;Petzoldt, Jurgen;Ellinger, Thomas;Hamouda, Cherif
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1587-1599
    • /
    • 2017
  • This paper proposes a real-time implementation of an optimal operation of a double stage grid connected wind power system incorporating an active power filter (APF). The system is used to supply the nonlinear loads with harmonics and reactive power compensation. On the generator side, a new adaptive neuro fuzzy inference system (ANFIS) based maximum power point tracking (MPPT) control is proposed to track the maximum wind power point regardless of wind speed fluctuations. Whereas on the grid side, a modified predictive current control (PCC) algorithm is used to control the APF, and allow to ensure both compensating harmonic currents and injecting the generated power into the grid. Also a type 2 fuzzy logic controller is used to control the DC-link capacitor in order to improve the dynamic response of the APF, and to ensure a well-smoothed DC-Link capacitor voltage. The gained benefits from these proposed control algorithms are the main contribution in this work. The proposed control scheme is implemented on a small-scale wind energy conversion system (WECS) controlled by a dSPACE 1104 card. Experimental results show that the proposed T2FLC maintains the DC-Link capacitor voltage within the limit for injecting the power into the grid. In addition, the PCC of the APF guarantees a flexible settlement of real power exchanges from the WECS to the grid with a high power factor operation.

Intelligent Attitude Control of an Unmanned Helicopter

  • An, Seong-Jun;Park, Bum-Jin;Suk, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.265-270
    • /
    • 2005
  • This paper presents a new attitude stabilization and control of an unmanned helicopter based on neural network compensation. A systematic derivation on the dynamics of an unmanned small-scale helicopter is performed. Combined rotor-fuselage-tail dynamics is derived in body-fixed reference frame with its origin at the C.G. of the helicopter. And the resulting nonlinear equation of motion consists of 6-DOF air vehicle dynamics as well as the rotor flapping and engine torque equations. A simulation model was modified using the existing simulator for an unmanned helicopter dynamic model, which reflects the unmanned test helicopter(CNUHELI). The dynamic response of the refined model was compared with the flight test data. It can be shown that a good coincidence was accomplished between the real unmanned helicopter system and the mathematical model. This dynamic model was linearized for classical controller design using small perturbation method. A Neuro-PD control system was designed for both longitudinal and lateral flight modes, and the results were compared with the PD-only control response. Simulation results show that the proposed Neuro-PD control system demonstrates better performance.

  • PDF