• Title/Summary/Keyword: neuro fuzzy system

Search Result 399, Processing Time 0.028 seconds

A Study on the Development of Robust Fault Diagnostic System Based on Neuro-Fuzzy Scheme

  • Kim, Sung-Ho;Lee, S-Sang-Yoon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.54-61
    • /
    • 1999
  • FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structure allows systematic causal reasoning through a forward inference. By using the FCM, authors have proposed FCM-based fault diagnostic algorithm. However, it can offer multiple interpretations for a single fault. In process engineering, as experience accumulated, some form of quantitative process knowledge is available. If this information can be integrated into the FCM-based fault diagnosis, the diagnostic resolution can be further improved. The purpose of this paper is to propose an enhanced FCM-based fault diagnostic scheme. Firstly, the membership function of fuzzy set theory is used to integrate quantitative knowledge into the FCM-based diagnostic scheme. Secondly, modified TAM recall procedure is proposed. Considering that the integration of quantitative knowledge into FCM-based diagnosis requires a great deal of engineering efforts, thirdly, an automated procedure for fusing the quantitative knowledge into FCM-based diagnosis is proposed by utilizing self-learning feature of neural network. Finally, the proposed diagnostic scheme has been tested by simulation on the two-tank system.

  • PDF

Control of Inverted Pendulum Using Adaptive Neuro Fuzzy Inference (적응 뉴로 퍼지 추론 시스템을 이용한 도립 진자 제어)

  • Hong, Dae-Seung;Bang, Sung-Yun;Ko, Jae-Ho;Ryu, Chang-Wan;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.693-695
    • /
    • 1998
  • Fuzzy controller design consists of intuition, and any other information about how to control system, into a set of rules. These rules can then be applied to the system. It is very important to decide parameters of IF-THEN rules. Because fuzzy controller can make more adequate force to the plant by means of parameter optimization, which is accomplished by learning procedure. In this paper, we apply fuzzy controller designed to the inverted pendulum.

  • PDF

Intelligent quality estimation system using primary circuit variables of RSW (저항점용접 1차 공정변수를 이용한 지능형 용접품질 판단 시스템)

  • 조용준;이세헌;신현일;배경민;권태용
    • Proceedings of the KWS Conference
    • /
    • 1999.10a
    • /
    • pp.142-145
    • /
    • 1999
  • The dynamic resistance monitoring is one of the important issues in that in-process and real time quality assurance of resistance spot weld is needed to increase the product reliability. Secondary dynamic resistance patterns, as a real manner, are hard to adapt those factors in real time and in-plant system. In the present study, a new dynamic resistance detecting method is presented as a practical manner of weld quality assurance at the primary circuit. By the correlation analysis, it is found that the primary dynamic resistance patterns are basically similar to those of the secondary. Various dynamic resistance indices are characterized with the primary curve. And quality of the weld, like the tensile shear strength, is estimated using adaptive neuro-fuzzy estimation system which is consisted of the Sugeno fuzzy algorithm. Through the fuzzy clustering and parameter optimization, real time weld quality assurance system with less efforts is proposed.

  • PDF

Intelligent Motion Planner for Redundant Manipulators Controlled by Neuro-Biological Signals

  • Kim, Chang-Hyun;Kim, Min-Soeng;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.845-848
    • /
    • 2003
  • There are many researches on using human neuro-biological signals for various problems such as controlling a mechanical object and/or interfacing human with the computer. It is one of very interesting topics that human can use various instruments without learning specific knowledge if the instruments can be controlled as human intends. In this paper, we proposed an intelligent motion planner for a redundant manipulator, which is controlled by humans neuro-biological signals, especially, EOG (Electrooculogram). We found the optimal motion planner for the redundant manipulator that can move to the desired point. We used neural networks to find the inverse kinematics solution of the manipulator. We also showed the performance of the proposed motion planner with several simulations.

  • PDF

An Adaptive Learning Method of Fuzzy Hypercubes using a Neural Network (신경망을 이용한 퍼지 하이퍼큐브의 적응 학습방법)

  • Jae-Kal, Uk;Choi, Byung-Keol;Min, Suk-Ki;Kang, Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.49-60
    • /
    • 1996
  • The objective of this paper is to develop an adaptive learning method for fuzzy hypercubes using a neural network. An intelligent control system is proposed by exploiting only the merits of a fuzzy logic controller and a neural network, assuming that we can modify in real time the consequential parts of the rulebase with adaptive learning, and that initial fuzzy control rules are established in a temporarily stable region. We choose the structure of fuzzy hypercubes for the fuzzy controller, and utilize the Perceptron learning rule in order to upda1.e the fuzzy control ru1c:s on-line with the output errors. As a result, the effectiveness and the robustness of this intelligent controller are shown with application of the proposed adaptive fuzzy-neuro controller to control of the cart-pole system.

  • PDF

A Study on Multi-layer Fuzzy Inference System based on a Modified GMDH Algorithm (수정된 GMDH 알고리즘 기반 다층 퍼지 추론 시스템에 관한 연구)

  • Park, Byoung-Jun;Park, Chun-Seong;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.675-677
    • /
    • 1998
  • In this paper, we propose the fuzzy inference algorithm with multi-layer structure. MFIS(Multi-layer Fuzzy Inference System) uses PNN(Polynomial Neural networks) structure and the fuzzy inference method. The PNN is the extended structure of the GMDH(Group Method of Data Hendling), and uses several types of polynomials such as linear, quadratic and cubic, as well as the biquadratic polynomial used in the GMDH. In the fuzzy inference method, the simplified and regression polynomial inference methods are used. Here, the regression polynomial inference is based on consequence of fuzzy rules with the polynomial equations such as linear, quadratic and cubic equation. Each node of the MFIS is defined as fuzzy rules and its structure is a kind of neuro-fuzzy structure. We use the training and testing data set to obtain a balance between the approximation and the generalization of process model. Several numerical examples are used to evaluate the performance of the our proposed model.

  • PDF

A Novel Algorithm for Fault Classification in Transmission Lines using a Combined Adaptive Network-based Fuzzy Inference System (Neuro-fuzzy network을 이용한 고장 검출 및 판별 알고리즘에 관한 연구)

  • Yeo, S.M.;Kim, C.H.;Chai, Y.M.;Choi, J.D.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.252-254
    • /
    • 2001
  • Accurate detection and classification of faults on transmission lines is vitally important. High impedance faults(HIF) in particular pose difficulties for the commonly employed conventional overcurrent and distance relays, and if not detected, can cause damage to expensive equipment, threaten life and cause fire hazards. Although HIFs are far less common than LIFs, it is imperative that any protection device should be able to satisfactorily deal with both HIFs and LIFs. This paper proposes an algorithm for fault detection and classification for both LIFs and HIFs using Adaptive Network-based Fuzzy Inference System(ANFIS). The performance of the proposed algorithm is tested on a typical 154[kV] Korean transmission line system under various fault conditions. Test results show that the ANFIS can detect and classify faults including (LIFs and HIFs) accurately within half a cycle.

  • PDF

Adaptive Control of Inverted Pendulum using ANFIS (ANFIS를 이용한 도립진자의 적응제어)

  • Do, Byung-Jo;Ko, Joe-Ho;Bae, Young-Chul;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.690-692
    • /
    • 1998
  • In general, fuzzy control system are efficient for the systems which are complicated and nonlinear. But the fuzzy control flawed by the fact that it is much trial and errors in process of getting parameters of membership function which can express optimal status of system. This paper shows the methodology which is applied of ANFIS(Adaptive Neuro-Fuzzy Inference System) for the coverage against these defects. It proved superiority of ANFIS by controlling inverted pendulum.

  • PDF

A Study on the Technique of Fault Classification in Transmission Lines Using a Combined Adaptive Network-Based Fuzzy Inference System (ANFIS를 이용한 송전선로의 고장판별 기법에 관한 연구)

  • Yeo, Sang-Min;Kim, Cheol-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.9
    • /
    • pp.417-423
    • /
    • 2001
  • This paper proposes a technique for fault detection and classification for both LIF(Low Impedance Fault)s and HIF(High Impedance Fault)s using Adaptive Network-based Fuzzy Inference System(ANFIS). The inputs into ANFIS are current signals only based on Root-Mean-Square(RMS) values of 3-phase currents and zero sequence current. The performance of the proposed technique is tested on a typical 154 kV Korean transmission line system under various fault conditions. Test results show that the ANFIS can detect and classily faults including (LIFs and HIFs) accurately within half a cycle.

  • PDF

Fuzzy rule Extraction of Neuro-Fuzzy System using EM algorithm (EM 알고리즘에 의한 뉴로-퍼지 시스템의 퍼지 규칙 생성)

  • 김승석;곽근창;유정웅;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.170-173
    • /
    • 2002
  • 본 논문에서는 여러 분야에서 널리 응용되고 있는 적응 뉴로-퍼지 시스템(ANFIS)에서의 효과적인 퍼지 규칙 생성방법을 제안한다. ANFIS의 성능 개선을 위해 구조동정을 수행함에 있어서 전제부 파라미터는 EM(Expectation-Maximization) 알고리즘을 적용하였으며, 파라미터학습은 Jang에 의한 하이브리드 방법을 적용한다. 여기서 초기의 중심과 분산을 구하기 위해 FCM(Fuzzy c-means) 클러스터링 기법을 사용하였다. 이렇게 함으로서 적은 규칙 수를 가지면서도 효율적인 퍼지 규칙을 얻을 수 있도록 하였다. 이들 방법의 유용함을 보이고자 Box-Jenkins의 가스로 데이터에 적용하여 제안된 방법이 이전의 연구보다 좋은 결과를 보임을 보이고자 한다

  • PDF